Properties

Label 303450x
Number of curves $2$
Conductor $303450$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("x1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 303450x have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 6 T + 11 T^{2}\) 1.11.ag
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 + T + 19 T^{2}\) 1.19.b
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 303450x do not have complex multiplication.

Modular form 303450.2.a.x

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - q^{7} - q^{8} + q^{9} + 6 q^{11} - q^{12} - 4 q^{13} + q^{14} + q^{16} - q^{18} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 303450x

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
303450.x2 303450x1 \([1, 1, 0, 917425, 1964519625]\) \(9056932295/181997172\) \(-1716003631622995312500\) \([]\) \(18662400\) \(2.7549\) \(\Gamma_0(N)\)-optimal
303450.x1 303450x2 \([1, 1, 0, -8294450, -54402943500]\) \(-6693187811305/131714173248\) \(-1241898416035763325000000\) \([]\) \(55987200\) \(3.3042\)