Properties

Label 303450by
Number of curves $1$
Conductor $303450$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("by1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 303450by1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 2 T + 11 T^{2}\) 1.11.c
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 303450by do not have complex multiplication.

Modular form 303450.2.a.by

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{3} + q^{4} - q^{6} - q^{7} - q^{8} + q^{9} - 2 q^{11} + q^{12} - q^{13} + q^{14} + q^{16} - q^{18} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 303450by

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
303450.by1 303450by1 \([1, 0, 1, -8821, -380782]\) \(-125768785/30618\) \(-18476102191050\) \([]\) \(868224\) \(1.2641\) \(\Gamma_0(N)\)-optimal