Properties

Label 30324.d
Number of curves $4$
Conductor $30324$
CM no
Rank $2$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 30324.d have rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 6 T + 11 T^{2}\) 1.11.g
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30324.d do not have complex multiplication.

Modular form 30324.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{7} + q^{9} - 6 q^{11} - 2 q^{13} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 30324.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30324.d1 30324c4 \([0, -1, 0, -660028, 206611384]\) \(2640279346000/3087\) \(37179042469632\) \([2]\) \(248832\) \(1.8870\)  
30324.d2 30324c3 \([0, -1, 0, -40913, 3294018]\) \(-10061824000/352947\) \(-265675240980912\) \([2]\) \(124416\) \(1.5405\)  
30324.d3 30324c2 \([0, -1, 0, -10228, 130936]\) \(9826000/5103\) \(61459233470208\) \([2]\) \(82944\) \(1.3377\)  
30324.d4 30324c1 \([0, -1, 0, 2407, 14694]\) \(2048000/1323\) \(-995867209008\) \([2]\) \(41472\) \(0.99115\) \(\Gamma_0(N)\)-optimal