Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy=x^3-90813x+10526242\)
|
(homogenize, simplify) |
|
\(y^2z+xyz=x^3-90813xz^2+10526242z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-117693675x+491465427750\)
|
(homogenize, minimize) |
Mordell-Weil group structure
trivial
Invariants
| Conductor: | $N$ | = | \( 3025 \) | = | $5^{2} \cdot 11^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-3349357515625$ | = | $-1 \cdot 5^{6} \cdot 11^{8} $ |
|
| j-invariant: | $j$ | = | \( -24729001 \) | = | $-1 \cdot 11 \cdot 131^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.4857057545005563699464119977$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.91761005024874084672859672089$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9685335876741098$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.722427441700289$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.74512802703663457522833804031$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
| Special value: | $ L(E,1)$ | ≈ | $0.74512802703663457522833804031 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 0.745128027 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.745128 \cdot 1.000000 \cdot 1}{1^2} \\ & \approx 0.745128027\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 9240 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 2 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $5$ | $1$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
| $11$ | $1$ | $IV^{*}$ | additive | -1 | 2 | 8 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2G | 4.2.0.1 |
| $11$ | 11B.10.5 | 11.60.1.3 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 440 = 2^{3} \cdot 5 \cdot 11 \), index $480$, genus $16$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 176 & 1 \end{array}\right),\left(\begin{array}{rr} 265 & 176 \\ 264 & 265 \end{array}\right),\left(\begin{array}{rr} 221 & 110 \\ 110 & 1 \end{array}\right),\left(\begin{array}{rr} 276 & 55 \\ 165 & 111 \end{array}\right),\left(\begin{array}{rr} 221 & 220 \\ 220 & 221 \end{array}\right),\left(\begin{array}{rr} 221 & 220 \\ 330 & 1 \end{array}\right),\left(\begin{array}{rr} 263 & 0 \\ 0 & 439 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 220 & 1 \end{array}\right),\left(\begin{array}{rr} 221 & 385 \\ 0 & 331 \end{array}\right),\left(\begin{array}{rr} 159 & 220 \\ 110 & 359 \end{array}\right),\left(\begin{array}{rr} 1 & 220 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 20 \\ 0 & 1 \end{array}\right)$.
The torsion field $K:=\Q(E[440])$ is a degree-$20275200$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/440\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $5$ | additive | $14$ | \( 121 = 11^{2} \) |
| $11$ | additive | $52$ | \( 25 = 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
11.
Its isogeny class 3025e
consists of 2 curves linked by isogenies of
degree 11.
Twists
The minimal quadratic twist of this elliptic curve is 121a1, its twist by $-55$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $3$ | 3.1.484.1 | \(\Z/2\Z\) | not in database |
| $6$ | 6.0.937024.1 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $8$ | 8.2.20012416875.3 | \(\Z/3\Z\) | not in database |
| $10$ | 10.10.669871503125.1 | \(\Z/11\Z\) | not in database |
| $12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | ord | add | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ss | ord |
| $\lambda$-invariant(s) | ? | 4 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
| $\mu$-invariant(s) | ? | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 |
An entry ? indicates that the invariants have not yet been computed.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.