Properties

Label 300352.w
Number of curves $1$
Conductor $300352$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("w1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 300352.w1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(13\)\(1 - T\)
\(19\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(5\) \( 1 + 4 T + 5 T^{2}\) 1.5.e
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 300352.w do not have complex multiplication.

Modular form 300352.2.a.w

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 4 q^{5} - 2 q^{7} - 2 q^{9} + 3 q^{11} + q^{13} + 4 q^{15} - 6 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 300352.w

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
300352.w1 300352w1 \([0, -1, 0, -6608225, -6536255999]\) \(-934165699635529/21632\) \(-739011165421568\) \([]\) \(7741440\) \(2.3757\) \(\Gamma_0(N)\)-optimal