Properties

Label 30015.o
Number of curves $4$
Conductor $30015$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("o1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 30015.o have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 + T\)
\(23\)\(1 - T\)
\(29\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 - T + 2 T^{2}\) 1.2.ab
\(7\) \( 1 + 7 T^{2}\) 1.7.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 30015.o do not have complex multiplication.

Modular form 30015.2.a.o

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} - q^{4} - q^{5} - 3 q^{8} - q^{10} + 6 q^{13} - q^{16} - 6 q^{17} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 30015.o

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
30015.o1 30015d4 \([1, -1, 0, -12006000, 16015003375]\) \(262537424941059264096001/250125\) \(182341125\) \([2]\) \(393216\) \(2.2613\)  
30015.o2 30015d2 \([1, -1, 0, -750375, 250375000]\) \(64096096056024006001/62562515625\) \(45608073890625\) \([2, 2]\) \(196608\) \(1.9147\)  
30015.o3 30015d3 \([1, -1, 0, -744750, 254309125]\) \(-62665433378363916001/2004003001000125\) \(-1460918187729091125\) \([2]\) \(393216\) \(2.2613\)  
30015.o4 30015d1 \([1, -1, 0, -47250, 3859375]\) \(16003198512756001/488525390625\) \(356135009765625\) \([2]\) \(98304\) \(1.5682\) \(\Gamma_0(N)\)-optimal