Properties

Label 298908c
Number of curves $1$
Conductor $298908$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("c1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 298908c1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(19\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + T + 5 T^{2}\) 1.5.b
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 5 T + 17 T^{2}\) 1.17.af
\(29\) \( 1 + 4 T + 29 T^{2}\) 1.29.e
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 298908c do not have complex multiplication.

Modular form 298908.2.a.c

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} - q^{7} + q^{11} - 4 q^{13} + 5 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 298908c

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
298908.c1 298908c1 \([0, 0, 0, -12970008, 17980758756]\) \(-27482443554816/3628411\) \(-31857051253552982784\) \([]\) \(9953280\) \(2.7621\) \(\Gamma_0(N)\)-optimal