Properties

Label 298908a
Number of curves $1$
Conductor $298908$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("a1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 298908a1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(19\)\(1\)
\(23\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 3 T + 5 T^{2}\) 1.5.d
\(7\) \( 1 - T + 7 T^{2}\) 1.7.ab
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 4 T + 13 T^{2}\) 1.13.ae
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 298908a do not have complex multiplication.

Modular form 298908.2.a.a

Copy content sage:E.q_eigenform(10)
 
\(q - 3 q^{5} + q^{7} - q^{11} + 4 q^{13} + 7 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 298908a

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
298908.a1 298908a1 \([0, 0, 0, -1264944, 638682644]\) \(-25494618112/5316979\) \(-46682493388170437376\) \([]\) \(8294400\) \(2.4960\) \(\Gamma_0(N)\)-optimal