Show commands: SageMath
Rank
The elliptic curves in class 296769f have rank \(1\).
L-function data
| Bad L-factors: |
| ||||||||||||||||||||||||
| Good L-factors: |
| ||||||||||||||||||||||||
| See L-function page for more information | |||||||||||||||||||||||||
Complex multiplication
The elliptic curves in class 296769f do not have complex multiplication.Modular form 296769.2.a.f
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 296769f
| LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
|---|---|---|---|---|---|---|---|---|
| 296769.f3 | 296769f1 | \([1, 0, 0, -6359, -195216]\) | \(192100033/561\) | \(83048133729\) | \([2]\) | \(360448\) | \(0.96566\) | \(\Gamma_0(N)\)-optimal |
| 296769.f2 | 296769f2 | \([1, 0, 0, -9004, -18001]\) | \(545338513/314721\) | \(46590003021969\) | \([2, 2]\) | \(720896\) | \(1.3122\) | |
| 296769.f1 | 296769f3 | \([1, 0, 0, -96289, 11451248]\) | \(666940371553/2756193\) | \(408015481010577\) | \([2]\) | \(1441792\) | \(1.6588\) | |
| 296769.f4 | 296769f4 | \([1, 0, 0, 35961, -134910]\) | \(34741712447/20160657\) | \(-2984500781819073\) | \([2]\) | \(1441792\) | \(1.6588\) |