Properties

Label 29400dn
Number of curves $1$
Conductor $29400$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dn1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 29400dn1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + T + 13 T^{2}\) 1.13.b
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - 6 T + 19 T^{2}\) 1.19.ag
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 7 T + 29 T^{2}\) 1.29.ah
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 29400dn do not have complex multiplication.

Modular form 29400.2.a.dn

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{9} - 5 q^{11} + 2 q^{13} - 6 q^{17} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 29400dn

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29400.h1 29400dn1 \([0, -1, 0, 14292, -20624463]\) \(1280/729\) \(-183861121893750000\) \([]\) \(322560\) \(1.9918\) \(\Gamma_0(N)\)-optimal