Properties

Label 293046p
Number of curves $2$
Conductor $293046$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("p1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 293046p have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(13\)\(1\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(19\) \( 1 + 4 T + 19 T^{2}\) 1.19.e
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 293046p do not have complex multiplication.

Modular form 293046.2.a.p

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + 3 q^{5} + q^{6} - 2 q^{7} - q^{8} + q^{9} - 3 q^{10} - 3 q^{11} - q^{12} + 2 q^{14} - 3 q^{15} + q^{16} - q^{18} - 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 293046p

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
293046.p2 293046p1 \([1, 1, 0, 780439, 115472193]\) \(2669927/1836\) \(-36150393050691109164\) \([]\) \(10782720\) \(2.4415\) \(\Gamma_0(N)\)-optimal
293046.p1 293046p2 \([1, 1, 0, -8743556, -11920952688]\) \(-3754462153/943296\) \(-18573268607377298752704\) \([]\) \(32348160\) \(2.9908\)