![Copy content]() sage:E = EllipticCurve("du1")
E.isogeny_class()
        sage:E = EllipticCurve("du1")
E.isogeny_class()
         
     
    
    
        ![Copy content]() sage:E.rank()
        sage:E.rank()
         
     
    
 The elliptic curve 291312du1 has
rank \(1\).
    |  | 
    | Bad L-factors: | 
        
            | Prime | L-Factor |  | \(2\) | \(1\) |  | \(3\) | \(1\) |  | \(7\) | \(1 + T\) |  | \(17\) | \(1\) |  | 
    |  | 
    | Good L-factors: | 
        
            | Prime | L-Factor | Isogeny Class over \(\mathbb{F}_p\) |  
            | \(5\) | \( 1 - T + 5 T^{2}\) | 1.5.ab |  
            | \(11\) | \( 1 - 3 T + 11 T^{2}\) | 1.11.ad |  
            | \(13\) | \( 1 - 4 T + 13 T^{2}\) | 1.13.ae |  
            | \(19\) | \( 1 + 6 T + 19 T^{2}\) | 1.19.g |  
            | \(23\) | \( 1 - 8 T + 23 T^{2}\) | 1.23.ai |  
            | \(29\) | \( 1 + 5 T + 29 T^{2}\) | 1.29.f |  | $\cdots$ | $\cdots$ | $\cdots$ |  | 
    |  | 
    | See L-function page for more information | 
 The elliptic curves in class 291312du do not have complex multiplication.
    
        ![Copy content]() sage:E.q_eigenform(10)
        sage:E.q_eigenform(10)
         
     
    
  
Elliptic curves in class 291312du
    
        ![Copy content]() sage:E.isogeny_class().curves
        sage:E.isogeny_class().curves