Properties

Label 291312.fq
Number of curves $2$
Conductor $291312$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("fq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 291312.fq have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(11\) \( 1 + 3 T + 11 T^{2}\) 1.11.d
\(13\) \( 1 - 5 T + 13 T^{2}\) 1.13.af
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 291312.fq do not have complex multiplication.

Modular form 291312.2.a.fq

Copy content sage:E.q_eigenform(10)
 
\(q + 3 q^{5} + q^{7} - 3 q^{11} + 5 q^{13} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 291312.fq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
291312.fq1 291312fq2 \([0, 0, 0, -6999291, 7131052458]\) \(-19486825371/11662\) \(-22694352998613295104\) \([]\) \(9953280\) \(2.6581\)  
291312.fq2 291312fq1 \([0, 0, 0, 75429, 40453642]\) \(17779581/275128\) \(-734432744503148544\) \([]\) \(3317760\) \(2.1088\) \(\Gamma_0(N)\)-optimal