Properties

Label 291312.en
Number of curves $2$
Conductor $291312$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("en1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 291312.en have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1 + T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 2 T + 5 T^{2}\) 1.5.ac
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 6 T + 13 T^{2}\) 1.13.ag
\(19\) \( 1 - 2 T + 19 T^{2}\) 1.19.ac
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 291312.en do not have complex multiplication.

Modular form 291312.2.a.en

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{5} - q^{7} + 6 q^{13} + 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 291312.en

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
291312.en1 291312en1 \([0, 0, 0, -877404, -316028725]\) \(265327034368/297381\) \(83724826600786896\) \([2]\) \(3317760\) \(2.1613\) \(\Gamma_0(N)\)-optimal
291312.en2 291312en2 \([0, 0, 0, -656319, -479145238]\) \(-6940769488/18000297\) \(-81085032067962085632\) \([2]\) \(6635520\) \(2.5078\)