Properties

Label 29120.t
Number of curves $3$
Conductor $29120$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("t1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 29120.t have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1 - T\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(3\) \( 1 + T + 3 T^{2}\) 1.3.b
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(19\) \( 1 + 2 T + 19 T^{2}\) 1.19.c
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 29120.t do not have complex multiplication.

Modular form 29120.2.a.t

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - q^{5} + q^{7} - 2 q^{9} + 3 q^{11} - q^{13} + q^{15} + 6 q^{17} - 2 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrr} 1 & 9 & 3 \\ 9 & 1 & 3 \\ 3 & 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 29120.t

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
29120.t1 29120g3 \([0, -1, 0, -3232204641, -75008771774495]\) \(-14245586655234650511684983641/1028175397808386133196800\) \(-269530011483081574500741939200\) \([]\) \(36578304\) \(4.3969\)  
29120.t2 29120g1 \([0, -1, 0, -37020641, 94022443105]\) \(-21405018343206000779641/2177246093750000000\) \(-570752000000000000000000\) \([]\) \(4064256\) \(3.2983\) \(\Gamma_0(N)\)-optimal
29120.t3 29120g2 \([0, -1, 0, 227979359, -86306556895]\) \(4998853083179567995470359/2905108466204672000000\) \(-761556753764757536768000000\) \([]\) \(12192768\) \(3.8476\)