Properties

Label 290472.d
Number of curves $4$
Conductor $290472$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("d1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 290472.d have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(7\)\(1\)
\(13\)\(1 + T\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 290472.d do not have complex multiplication.

Modular form 290472.2.a.d

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} - 2 q^{5} + q^{9} - 4 q^{11} - q^{13} + 2 q^{15} + 6 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 290472.d

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
290472.d1 290472d4 \([0, -1, 0, -1222664, 175354908]\) \(1677865892403172/861235747047\) \(103755288990036483072\) \([2]\) \(8847360\) \(2.5329\)  
290472.d2 290472d2 \([0, -1, 0, -980604, 373747284]\) \(3462397543530448/3602520441\) \(108501229404981504\) \([2, 2]\) \(4423680\) \(2.1864\)  
290472.d3 290472d1 \([0, -1, 0, -980359, 373943284]\) \(55356847905445888/60021\) \(112982570064\) \([2]\) \(2211840\) \(1.8398\) \(\Gamma_0(N)\)-optimal
290472.d4 290472d3 \([0, -1, 0, -742464, 559591740]\) \(-375718260235972/904469833683\) \(-108963810778082577408\) \([2]\) \(8847360\) \(2.5329\)