Show commands: SageMath
Rank
The elliptic curves in class 29040co have rank \(0\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 29040co do not have complex multiplication.Modular form 29040.2.a.co
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrrrr} 1 & 2 & 4 & 4 & 8 & 8 \\ 2 & 1 & 2 & 2 & 4 & 4 \\ 4 & 2 & 1 & 4 & 2 & 2 \\ 4 & 2 & 4 & 1 & 8 & 8 \\ 8 & 4 & 2 & 8 & 1 & 4 \\ 8 & 4 & 2 & 8 & 4 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 29040co
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
29040.bm5 | 29040co1 | \([0, -1, 0, 9640, 1409520]\) | \(13651919/126720\) | \(-919520091832320\) | \([2]\) | \(92160\) | \(1.5525\) | \(\Gamma_0(N)\)-optimal |
29040.bm4 | 29040co2 | \([0, -1, 0, -145240, 19747312]\) | \(46694890801/3920400\) | \(28447652841062400\) | \([2, 2]\) | \(184320\) | \(1.8990\) | |
29040.bm3 | 29040co3 | \([0, -1, 0, -493720, -110723600]\) | \(1834216913521/329422500\) | \(2390393051228160000\) | \([2, 2]\) | \(368640\) | \(2.2456\) | |
29040.bm2 | 29040co4 | \([0, -1, 0, -2274840, 1321358832]\) | \(179415687049201/1443420\) | \(10473908546027520\) | \([2]\) | \(368640\) | \(2.2456\) | |
29040.bm6 | 29040co5 | \([0, -1, 0, 958280, -640413200]\) | \(13411719834479/32153832150\) | \(-233318297753543270400\) | \([2]\) | \(737280\) | \(2.5922\) | |
29040.bm1 | 29040co6 | \([0, -1, 0, -7521400, -7936748048]\) | \(6484907238722641/283593750\) | \(2057845257600000000\) | \([2]\) | \(737280\) | \(2.5922\) |