Properties

Label 289800.dw
Number of curves $1$
Conductor $289800$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dw1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 289800.dw1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1 - T\)
\(23\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - T + 13 T^{2}\) 1.13.ab
\(17\) \( 1 + 4 T + 17 T^{2}\) 1.17.e
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(29\) \( 1 + 5 T + 29 T^{2}\) 1.29.f
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 289800.dw do not have complex multiplication.

Modular form 289800.2.a.dw

Copy content sage:E.q_eigenform(10)
 
\(q + q^{7} + q^{13} - 4 q^{17} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 289800.dw

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
289800.dw1 289800dw1 \([0, 0, 0, -88275, 14332750]\) \(-3261064466/1917027\) \(-44720405856000000\) \([]\) \(2073600\) \(1.8975\) \(\Gamma_0(N)\)-optimal