Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3+1340x-4051\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3+1340xz^2-4051z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+1737261x-194203602\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(3, -2)$ | $0$ | $2$ |
Integral points
\( \left(3, -2\right) \)
Invariants
| Conductor: | $N$ | = | \( 28749 \) | = | $3 \cdot 7 \cdot 37^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-161640763767$ | = | $-1 \cdot 3^{2} \cdot 7 \cdot 37^{6} $ |
|
| j-invariant: | $j$ | = | \( \frac{103823}{63} \) | = | $3^{-2} \cdot 7^{-1} \cdot 47^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.83994356887313402881646550800$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.96551538744897819336758232752$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9786808587681587$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.235417022282141$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
| Mordell-Weil rank: | $r$ | = | $ 0$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
| Real period: | $\Omega$ | ≈ | $0.59330332642971050051116410158$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot1\cdot2^{2} $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L(E,1)$ | ≈ | $4.7464266114376840040893128126 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $4$ = $2^2$ (exact) |
|
BSD formula
$$\begin{aligned} 4.746426611 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{4 \cdot 0.593303 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 4.746426611\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 25344 |
|
| $ \Gamma_0(N) $-optimal: | yes | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
| $7$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
| $37$ | $4$ | $I_0^{*}$ | additive | 1 | 2 | 6 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 16.24.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 12432 = 2^{4} \cdot 3 \cdot 7 \cdot 37 \), index $192$, genus $1$, and generators
$\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 5 & 4 \\ 12428 & 12429 \end{array}\right),\left(\begin{array}{rr} 15 & 2 \\ 12334 & 12419 \end{array}\right),\left(\begin{array}{rr} 1 & 2368 \\ 10508 & 9621 \end{array}\right),\left(\begin{array}{rr} 7697 & 2368 \\ 74 & 10287 \end{array}\right),\left(\begin{array}{rr} 4031 & 0 \\ 0 & 12431 \end{array}\right),\left(\begin{array}{rr} 12417 & 16 \\ 12416 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 2813 & 2368 \\ 7696 & 6069 \end{array}\right),\left(\begin{array}{rr} 7216 & 7733 \\ 10323 & 1666 \end{array}\right)$.
The torsion field $K:=\Q(E[12432])$ is a degree-$22570025877504$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/12432\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 9583 = 7 \cdot 37^{2} \) |
| $3$ | split multiplicative | $4$ | \( 9583 = 7 \cdot 37^{2} \) |
| $7$ | nonsplit multiplicative | $8$ | \( 4107 = 3 \cdot 37^{2} \) |
| $37$ | additive | $686$ | \( 21 = 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2, 4 and 8.
Its isogeny class 28749e
consists of 6 curves linked by isogenies of
degrees dividing 8.
Twists
The minimal quadratic twist of this elliptic curve is 21a4, its twist by $37$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-7}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{37}) \) | \(\Z/4\Z\) | 2.2.37.1-441.1-i2 |
| $2$ | \(\Q(\sqrt{-259}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-7}, \sqrt{37})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{21}, \sqrt{37})\) | \(\Z/8\Z\) | not in database |
| $4$ | \(\Q(\sqrt{-3}, \sqrt{37})\) | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.4572146321051904.50 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.0.56446250877184.12 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.364488705441.8 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $8$ | 8.0.66946905081.5 | \(\Z/16\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/16\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 7 | 37 |
|---|---|---|---|---|
| Reduction type | ord | split | nonsplit | add |
| $\lambda$-invariant(s) | 3 | 1 | 0 | - |
| $\mu$-invariant(s) | 0 | 0 | 0 | - |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.