Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2-6434567x+6284029966\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z-6434567xz^2+6284029966z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-102953067x+402074964774\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(1465, -733)$ | $0$ | $2$ |
Integral points
\( \left(1465, -733\right) \)
Invariants
Conductor: | $N$ | = | \( 28665 \) | = | $3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $1127817741038625$ | = | $3^{3} \cdot 5^{3} \cdot 7^{11} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{9275335480470938787}{355047875} \) | = | $3^{3} \cdot 5^{-3} \cdot 7^{-5} \cdot 13^{-2} \cdot 700361^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.3794226667147832479265852204$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $1.1318145200200991725250975394$ |
|
||
$abc$ quality: | $Q$ | ≈ | $1.0864249349968382$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.713993855270198$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.36186784463855931759041832527$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 24 $ = $ 2\cdot3\cdot2\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $2.1712070678313559055425099516 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 2.171207068 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.361868 \cdot 1.000000 \cdot 24}{2^2} \\ & \approx 2.171207068\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 599040 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $2$ | $III$ | additive | 1 | 2 | 3 | 0 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$7$ | $2$ | $I_{5}^{*}$ | additive | -1 | 2 | 11 | 5 |
$13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5460 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 3644 & 1 \\ 1819 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 4682 & 1 \\ 3119 & 0 \end{array}\right),\left(\begin{array}{rr} 1369 & 4096 \\ 1364 & 4095 \end{array}\right),\left(\begin{array}{rr} 1094 & 1 \\ 2183 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 5457 & 4 \\ 5456 & 5 \end{array}\right),\left(\begin{array}{rr} 4201 & 4 \\ 2942 & 9 \end{array}\right)$.
The torsion field $K:=\Q(E[5460])$ is a degree-$9738607656960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5460\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 735 = 3 \cdot 5 \cdot 7^{2} \) |
$3$ | additive | $6$ | \( 637 = 7^{2} \cdot 13 \) |
$5$ | split multiplicative | $6$ | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $32$ | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 28665r
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 4095a1, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{105}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.4.2555280.1 | \(\Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.8.7998583451040000.7 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.7348698545643.9 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 13 |
---|---|---|---|---|---|
Reduction type | ord | add | split | add | split |
$\lambda$-invariant(s) | 4 | - | 1 | - | 1 |
$\mu$-invariant(s) | 0 | - | 0 | - | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 5$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.