Properties

Label 286650mk
Number of curves $2$
Conductor $286650$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("mk1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 286650mk have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 3 T + 29 T^{2}\) 1.29.d
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 286650mk do not have complex multiplication.

Modular form 286650.2.a.mk

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{8} - q^{13} + q^{16} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 286650mk

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.mk2 286650mk1 \([1, -1, 1, 132070, -398040303]\) \(7604375/2047032\) \(-68580466485496875000\) \([]\) \(7464960\) \(2.4854\) \(\Gamma_0(N)\)-optimal
286650.mk1 286650mk2 \([1, -1, 1, -37077305, -86902395303]\) \(-168256703745625/30371328\) \(-1017512106319800000000\) \([]\) \(22394880\) \(3.0347\)