Properties

Label 286650.qq
Number of curves $2$
Conductor $286650$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("qq1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 286650.qq have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - 4 T + 11 T^{2}\) 1.11.ae
\(17\) \( 1 - 2 T + 17 T^{2}\) 1.17.ac
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 2 T + 23 T^{2}\) 1.23.ac
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 286650.qq do not have complex multiplication.

Modular form 286650.2.a.qq

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} + q^{8} + 4 q^{11} + q^{13} + q^{16} + 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 286650.qq

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.qq1 286650qq2 \([1, -1, 1, -202880, 35218747]\) \(8754552981/1352\) \(142620557625000\) \([2]\) \(1843200\) \(1.7276\)  
286650.qq2 286650qq1 \([1, -1, 1, -13880, 442747]\) \(2803221/832\) \(87766497000000\) \([2]\) \(921600\) \(1.3811\) \(\Gamma_0(N)\)-optimal