Properties

Label 286650.eo
Number of curves $2$
Conductor $286650$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("eo1")
 
E.isogeny_class()
 

Elliptic curves in class 286650.eo

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.eo1 286650eo1 \([1, -1, 0, -1361817, 633032091]\) \(-86806489/3510\) \(-11293669412323593750\) \([]\) \(6967296\) \(2.4238\) \(\Gamma_0(N)\)-optimal
286650.eo2 286650eo2 \([1, -1, 0, 6741558, 1921468716]\) \(10531168151/6591000\) \(-21207001452029859375000\) \([]\) \(20901888\) \(2.9731\)  

Rank

sage: E.rank()
 

The elliptic curves in class 286650.eo have rank \(0\).

Complex multiplication

The elliptic curves in class 286650.eo do not have complex multiplication.

Modular form 286650.2.a.eo

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} + q^{13} + q^{16} + 3 q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.