Properties

Label 286650.ce
Number of curves $2$
Conductor $286650$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
E = EllipticCurve("ce1")
 
E.isogeny_class()
 

Elliptic curves in class 286650.ce

sage: E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.ce1 286650ce2 \([1, -1, 0, -446463117, -3629259378459]\) \(58753624886834093/30539798016\) \(5115781273351203000000000\) \([2]\) \(92897280\) \(3.6920\)  
286650.ce2 286650ce1 \([1, -1, 0, -23103117, -76845618459]\) \(-8141222941613/10520100864\) \(-1762242663347712000000000\) \([2]\) \(46448640\) \(3.3455\) \(\Gamma_0(N)\)-optimal

Rank

sage: E.rank()
 

The elliptic curves in class 286650.ce have rank \(0\).

Complex multiplication

The elliptic curves in class 286650.ce do not have complex multiplication.

Modular form 286650.2.a.ce

sage: E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - 2 q^{11} - q^{13} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

sage: E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)

Isogeny graph

sage: E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.