Properties

Label 286650.s
Number of curves $1$
Conductor $286650$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("s1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 286650.s1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 5 T + 11 T^{2}\) 1.11.f
\(17\) \( 1 + T + 17 T^{2}\) 1.17.b
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 - 5 T + 23 T^{2}\) 1.23.af
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 286650.s do not have complex multiplication.

Modular form 286650.2.a.s

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - 5 q^{11} + q^{13} + q^{16} - q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 286650.s

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.s1 286650s1 \([1, -1, 0, 100833, 34881741]\) \(2284322013/11927552\) \(-592002238464000000\) \([]\) \(3655680\) \(2.0923\) \(\Gamma_0(N)\)-optimal