sage:E = EllipticCurve("lx1")
E.isogeny_class()
sage:E.rank()
The elliptic curve 286650.lx1 has
rank 0.
| |
| Bad L-factors: |
| Prime |
L-Factor |
| 2 | 1−T |
| 3 | 1 |
| 5 | 1 |
| 7 | 1 |
| 13 | 1+T |
|
| |
| Good L-factors: |
| Prime |
L-Factor |
Isogeny Class over Fp |
| 11 |
1+T+11T2 |
1.11.b
|
| 17 |
1−7T+17T2 |
1.17.ah
|
| 19 |
1−3T+19T2 |
1.19.ad
|
| 23 |
1+23T2 |
1.23.a
|
| 29 |
1−4T+29T2 |
1.29.ae
|
| ⋯ | ⋯ | ⋯ |
|
| |
| See L-function page for more information |
The elliptic curves in class 286650.lx do not have complex multiplication.
sage:E.q_eigenform(10)
Elliptic curves in class 286650.lx
sage:E.isogeny_class().curves
| LMFDB label |
Cremona label |
Weierstrass coefficients |
j-invariant |
Discriminant |
Torsion structure |
Modular degree |
Faltings height |
Optimality |
| 286650.lx1 |
286650lx1 |
[1,−1,1,132070,203924697] |
304175/21632 |
−18118093061250000000 |
[] |
7257600 |
2.3748
|
Γ0(N)-optimal |