Properties

Label 286650.ba
Number of curves $4$
Conductor $286650$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("ba1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 286650.ba have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(5\)\(1\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 4 T + 11 T^{2}\) 1.11.e
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
\(29\) \( 1 - 2 T + 29 T^{2}\) 1.29.ac
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 286650.ba do not have complex multiplication.

Modular form 286650.2.a.ba

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} - q^{8} - 4 q^{11} - q^{13} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 286650.ba

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
286650.ba1 286650ba4 \([1, -1, 0, -1202168067, -16042599251659]\) \(143378317900125424089/4976562500000\) \(6669069711547851562500000\) \([2]\) \(141557760\) \(3.8539\)  
286650.ba2 286650ba2 \([1, -1, 0, -78500067, -226972151659]\) \(39920686684059609/6492304000000\) \(8700308288012250000000000\) \([2, 2]\) \(70778880\) \(3.5074\)  
286650.ba3 286650ba1 \([1, -1, 0, -22052067, 36470664341]\) \(884984855328729/83492864000\) \(111888423069696000000000\) \([2]\) \(35389440\) \(3.1608\) \(\Gamma_0(N)\)-optimal
286650.ba4 286650ba3 \([1, -1, 0, 141999933, -1272362651659]\) \(236293804275620391/658593925444000\) \(-882578848429610667562500000\) \([2]\) \(141557760\) \(3.8539\)