Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-x^2+43x+1306\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-x^2z+43xz^2+1306z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+693x+84294\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-4, 34)$ | $0.49948367844649278630971772867$ | $\infty$ |
Integral points
\( \left(-4, 34\right) \), \( \left(-4, -31\right) \), \( \left(11, 49\right) \), \( \left(11, -61\right) \)
Invariants
Conductor: | $N$ | = | \( 28665 \) | = | $3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
Discriminant: | $\Delta$ | = | $-754606125$ | = | $-1 \cdot 3^{6} \cdot 5^{3} \cdot 7^{2} \cdot 13^{2} $ |
|
j-invariant: | $j$ | = | \( \frac{251559}{21125} \) | = | $3^{3} \cdot 5^{-3} \cdot 7 \cdot 11^{3} \cdot 13^{-2}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.38296723188031971082974058224$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.49065727062962068571877416013$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8981983978919795$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.717366949973393$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.49948367844649278630971772867$ |
|
Real period: | $\Omega$ | ≈ | $1.2230501795944506777110720056$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 6 $ = $ 1\cdot3\cdot1\cdot2 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.6653616157708791322586749416 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.665361616 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.223050 \cdot 0.499484 \cdot 6}{1^2} \\ & \approx 3.665361616\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 10080 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$5$ | $3$ | $I_{3}$ | split multiplicative | -1 | 1 | 3 | 3 |
$7$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
$13$ | $2$ | $I_{2}$ | split multiplicative | -1 | 1 | 2 | 2 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$.
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has label 20.2.0.a.1, level \( 20 = 2^{2} \cdot 5 \), index $2$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 1 \\ 19 & 0 \end{array}\right),\left(\begin{array}{rr} 17 & 2 \\ 17 & 3 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 2 & 1 \end{array}\right),\left(\begin{array}{rr} 11 & 2 \\ 11 & 3 \end{array}\right),\left(\begin{array}{rr} 19 & 2 \\ 18 & 3 \end{array}\right)$.
The torsion field $K:=\Q(E[20])$ is a degree-$23040$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/20\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | good | $2$ | \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \) |
$3$ | additive | $6$ | \( 637 = 7^{2} \cdot 13 \) |
$5$ | split multiplicative | $6$ | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) |
$7$ | additive | $14$ | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
$13$ | split multiplicative | $14$ | \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has no rational isogenies. Its isogeny class 28665.r consists of this curve only.
Twists
The minimal quadratic twist of this elliptic curve is 3185.g1, its twist by $-3$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$3$ | 3.1.980.1 | \(\Z/2\Z\) | not in database |
$6$ | 6.0.19208000.2 | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$8$ | 8.2.7348698545643.9 | \(\Z/3\Z\) | not in database |
$12$ | deg 12 | \(\Z/4\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | ord | add | split | add | ss | split | ord | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | 2 | - | 2 | - | 1,1 | 2 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | 0 | - | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.