Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2-92693x+10881406\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z-92693xz^2+10881406z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3-1483083x+694926918\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(170, 37)$ | $1.3661131445300151135569294350$ | $\infty$ |
| $(191, 247)$ | $1.4613583479485367724071862226$ | $\infty$ |
| $(715/4, -719/8)$ | $0$ | $2$ |
Integral points
\( \left(-250, 4412\right) \), \( \left(-250, -4163\right) \), \( \left(-152, 4706\right) \), \( \left(-152, -4555\right) \), \( \left(118, 1196\right) \), \( \left(118, -1315\right) \), \( \left(170, 37\right) \), \( \left(170, -208\right) \), \( \left(172, -19\right) \), \( \left(172, -154\right) \), \( \left(191, 247\right) \), \( \left(191, -439\right) \), \( \left(311, 3317\right) \), \( \left(311, -3629\right) \), \( \left(415, 6407\right) \), \( \left(415, -6823\right) \)
Invariants
| Conductor: | $N$ | = | \( 28665 \) | = | $3^{2} \cdot 5 \cdot 7^{2} \cdot 13$ |
|
| Discriminant: | $\Delta$ | = | $36877287876975$ | = | $3^{9} \cdot 5^{2} \cdot 7^{8} \cdot 13 $ |
|
| j-invariant: | $j$ | = | \( \frac{38034753147}{15925} \) | = | $3^{3} \cdot 5^{-2} \cdot 7^{-2} \cdot 13^{-1} \cdot 19^{3} \cdot 59^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $1.5646569785496833415415924923$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.23225731247905557955751780711$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.8644906729222592$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $4.474598455683871$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 2$ |
|
| Mordell-Weil rank: | $r$ | = | $ 2$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.9487707544307666205130191916$ |
|
| Real period: | $\Omega$ | ≈ | $0.63953911017389948976712968833$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 16 $ = $ 2\cdot2\cdot2^{2}\cdot1 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L^{(2)}(E,1)/2!$ | ≈ | $4.9852604568862851238768749596 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 4.985260457 \approx L^{(2)}(E,1)/2! & \overset{?}{=} \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.639539 \cdot 1.948771 \cdot 16}{2^2} \\ & \approx 4.985260457\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 129024 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $3$ | $2$ | $III^{*}$ | additive | 1 | 2 | 9 | 0 |
| $5$ | $2$ | $I_{2}$ | nonsplit multiplicative | 1 | 1 | 2 | 2 |
| $7$ | $4$ | $I_{2}^{*}$ | additive | -1 | 2 | 8 | 2 |
| $13$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 5460 = 2^{2} \cdot 3 \cdot 5 \cdot 7 \cdot 13 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 3644 & 1 \\ 1819 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 2341 & 4 \\ 4682 & 9 \end{array}\right),\left(\begin{array}{rr} 2942 & 1 \\ 1259 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right),\left(\begin{array}{rr} 5457 & 4 \\ 5456 & 5 \end{array}\right),\left(\begin{array}{rr} 3277 & 4 \\ 1094 & 9 \end{array}\right),\left(\begin{array}{rr} 4096 & 1369 \\ 1365 & 4096 \end{array}\right)$.
The torsion field $K:=\Q(E[5460])$ is a degree-$9738607656960$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/5460\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | good | $2$ | \( 1911 = 3 \cdot 7^{2} \cdot 13 \) |
| $3$ | additive | $2$ | \( 3185 = 5 \cdot 7^{2} \cdot 13 \) |
| $5$ | nonsplit multiplicative | $6$ | \( 5733 = 3^{2} \cdot 7^{2} \cdot 13 \) |
| $7$ | additive | $32$ | \( 585 = 3^{2} \cdot 5 \cdot 13 \) |
| $13$ | nonsplit multiplicative | $14$ | \( 2205 = 3^{2} \cdot 5 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 28665.h
consists of 2 curves linked by isogenies of
degree 2.
Twists
The minimal quadratic twist of this elliptic curve is 4095.g1, its twist by $-7$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{39}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $4$ | 4.4.1719900.3 | \(\Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.8.7998583451040000.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | ord | add | nonsplit | add | ord | nonsplit | ord | ord | ss | ord | ord | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 6 | - | 2 | - | 2 | 2 | 2 | 2 | 2,2 | 2 | 2 | 2 | 2 | 2 | 2 |
| $\mu$-invariant(s) | 0 | - | 0 | - | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.