Properties

Label 28665.bc
Number of curves $1$
Conductor $28665$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("bc1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 28665.bc1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1\)
\(5\)\(1 - T\)
\(7\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + 2 T^{2}\) 1.2.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(17\) \( 1 - 7 T + 17 T^{2}\) 1.17.ah
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 7 T + 23 T^{2}\) 1.23.ah
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 28665.bc do not have complex multiplication.

Modular form 28665.2.a.bc

Copy content sage:E.q_eigenform(10)
 
\(q - 2 q^{4} + q^{5} - q^{13} + 4 q^{16} + 7 q^{17} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 28665.bc

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28665.bc1 28665bi1 \([0, 0, 1, 288790908, -108146316798]\) \(633814853024541310976/367993254509587395\) \(-1546506345679200340802594955\) \([]\) \(13540800\) \(3.9066\) \(\Gamma_0(N)\)-optimal