Show commands for:
SageMath
sage: E = EllipticCurve("ez1")
sage: E.isogeny_class()
Elliptic curves in class 286110.ez
sage: E.isogeny_class().curves
LMFDB label | Cremona label | Weierstrass coefficients | Torsion structure | Modular degree | Optimality |
---|---|---|---|---|---|
286110.ez1 | 286110ez2 | [1, -1, 1, -373298, -55981969] | [2] | 4718592 | |
286110.ez2 | 286110ez1 | [1, -1, 1, 68872, -6105193] | [2] | 2359296 | \(\Gamma_0(N)\)-optimal |
Rank
sage: E.rank()
The elliptic curves in class 286110.ez have rank \(0\).
Complex multiplication
The elliptic curves in class 286110.ez do not have complex multiplication.Modular form 286110.2.a.ez
sage: E.q_eigenform(10)
Isogeny matrix
sage: E.isogeny_class().matrix()
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.
\(\left(\begin{array}{rr} 1 & 2 \\ 2 & 1 \end{array}\right)\)
Isogeny graph
sage: E.isogeny_graph().plot(edge_labels=True)
The vertices are labelled with LMFDB labels.