Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3+x^2-544x-4624\)
|
(homogenize, simplify) |
\(y^2z=x^3+x^2z-544xz^2-4624z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-44091x-3238650\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-17, 0)$ | $0$ | $2$ |
Integral points
\( \left(-17, 0\right) \)
Invariants
Conductor: | $N$ | = | \( 2856 \) | = | $2^{3} \cdot 3 \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $1796035584$ | = | $2^{10} \cdot 3 \cdot 7 \cdot 17^{4} $ |
|
j-invariant: | $j$ | = | \( \frac{17418812548}{1753941} \) | = | $2^{2} \cdot 3^{-1} \cdot 7^{-1} \cdot 17^{-4} \cdot 23^{3} \cdot 71^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.51187343194056574699643030644$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.065749218526055344184596461441$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9500550123380991$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.834561830823341$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 0$ |
|
Mordell-Weil rank: | $r$ | = | $ 0$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | = | $1$ |
|
Real period: | $\Omega$ | ≈ | $0.99481534077376861377386335271$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2\cdot1\cdot1\cdot2^{2} $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L(E,1)$ | ≈ | $1.9896306815475372275477267054 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | = | $1$ (exact) |
|
BSD formula
$$\begin{aligned} 1.989630682 \approx L(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.994815 \cdot 1.000000 \cdot 8}{2^2} \\ & \approx 1.989630682\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 1280 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $2$ | $III^{*}$ | additive | 1 | 3 | 10 | 0 |
$3$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$17$ | $4$ | $I_{4}$ | split multiplicative | -1 | 1 | 4 | 4 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.12.0.8 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2689 & 8 \\ 2188 & 33 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 1636 & 1 \\ 839 & 6 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2850 & 2851 \end{array}\right),\left(\begin{array}{rr} 956 & 1 \\ 1927 & 6 \end{array}\right),\left(\begin{array}{rr} 1075 & 1072 \\ 2522 & 1077 \end{array}\right),\left(\begin{array}{rr} 2849 & 8 \\ 2848 & 9 \end{array}\right),\left(\begin{array}{rr} 1075 & 1074 \\ 370 & 1795 \end{array}\right)$.
The torsion field $K:=\Q(E[2856])$ is a degree-$242573377536$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2856\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 21 = 3 \cdot 7 \) |
$3$ | split multiplicative | $4$ | \( 952 = 2^{3} \cdot 7 \cdot 17 \) |
$7$ | split multiplicative | $8$ | \( 408 = 2^{3} \cdot 3 \cdot 17 \) |
$17$ | split multiplicative | $18$ | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 2856c
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-1}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{21}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{-21}) \) | \(\Z/4\Z\) | not in database |
$4$ | 4.2.592704.2 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$4$ | \(\Q(i, \sqrt{21})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.5620768505856.46 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.150866989056.4 | \(\Z/8\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.36376558083468288.12 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 7 | 17 |
---|---|---|---|---|
Reduction type | add | split | split | split |
$\lambda$-invariant(s) | - | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 |
All Iwasawa $\lambda$ and $\mu$-invariants for primes $p\ge 3$ of good reduction are zero.
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
All $p$-adic regulators are identically $1$ since the rank is $0$.