Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-x^2+28x-60\)
|
(homogenize, simplify) |
\(y^2z=x^3-x^2z+28xz^2-60z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3+2241x-36990\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(4, 10)$ | $1.1505376665157038403558703815$ | $\infty$ |
$(2, 0)$ | $0$ | $2$ |
Integral points
\( \left(2, 0\right) \), \((4,\pm 10)\), \((20,\pm 90)\)
Invariants
Conductor: | $N$ | = | \( 2856 \) | = | $2^{3} \cdot 3 \cdot 7 \cdot 17$ |
|
Discriminant: | $\Delta$ | = | $-2467584$ | = | $-1 \cdot 2^{8} \cdot 3^{4} \cdot 7 \cdot 17 $ |
|
j-invariant: | $j$ | = | \( \frac{9148592}{9639} \) | = | $2^{4} \cdot 3^{-4} \cdot 7^{-1} \cdot 17^{-1} \cdot 83^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $-0.086725285942242903078570642178$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-0.54882340631553977602339205648$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.7908893912675757$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.711299134493771$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $1.1505376665157038403558703815$ |
|
Real period: | $\Omega$ | ≈ | $1.3954314667293557255385965736$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 2^{2}\cdot2\cdot1\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.2109929270267579129813344231 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.210992927 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.395431 \cdot 1.150538 \cdot 8}{2^2} \\ & \approx 3.210992927\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 384 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $4$ | $I_{1}^{*}$ | additive | -1 | 3 | 8 | 0 |
$3$ | $2$ | $I_{4}$ | nonsplit multiplicative | 1 | 1 | 4 | 4 |
$7$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
$17$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 4.6.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2856 = 2^{3} \cdot 3 \cdot 7 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 361 & 360 \\ 1798 & 367 \end{array}\right),\left(\begin{array}{rr} 1636 & 1 \\ 839 & 6 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 2507 & 2502 \\ 362 & 1787 \end{array}\right),\left(\begin{array}{rr} 1520 & 3 \\ 2021 & 2 \end{array}\right),\left(\begin{array}{rr} 953 & 8 \\ 956 & 33 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 2850 & 2851 \end{array}\right),\left(\begin{array}{rr} 2849 & 8 \\ 2848 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right)$.
The torsion field $K:=\Q(E[2856])$ is a degree-$242573377536$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2856\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 119 = 7 \cdot 17 \) |
$3$ | nonsplit multiplicative | $4$ | \( 952 = 2^{3} \cdot 7 \cdot 17 \) |
$7$ | split multiplicative | $8$ | \( 408 = 2^{3} \cdot 3 \cdot 17 \) |
$17$ | nonsplit multiplicative | $18$ | \( 168 = 2^{3} \cdot 3 \cdot 7 \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 2856.b
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{-119}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$2$ | \(\Q(\sqrt{17}) \) | \(\Z/4\Z\) | not in database |
$2$ | \(\Q(\sqrt{-7}) \) | \(\Z/4\Z\) | not in database |
$4$ | \(\Q(\sqrt{-7}, \sqrt{17})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.0.726978778951936.3 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/8\Z\) | not in database |
$8$ | 8.0.180489122021376.26 | \(\Z/8\Z\) | not in database |
$8$ | 8.2.36376558083468288.6 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
$16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | nonsplit | ord | split | ord | ord | nonsplit | ord | ord | ord | ss | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | 1 | 3 | 2 | 1 | 1 | 1 | 1 | 3 | 1 | 1,1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.