Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2+xy+y=x^3-786x+4318\)
|
(homogenize, simplify) |
\(y^2z+xyz+yz^2=x^3-786xz^2+4318z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-1018035x+204526350\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(26, 27)$ | $0.37988880681709634885039979824$ | $\infty$ |
$(23/4, -27/8)$ | $0$ | $2$ |
Integral points
\( \left(-28, 81\right) \), \( \left(-28, -54\right) \), \( \left(2, 51\right) \), \( \left(2, -54\right) \), \( \left(26, 27\right) \), \( \left(26, -54\right) \), \( \left(188, 2457\right) \), \( \left(188, -2646\right) \)
Invariants
Conductor: | $N$ | = | \( 2850 \) | = | $2 \cdot 3 \cdot 5^{2} \cdot 19$ |
|
Discriminant: | $\Delta$ | = | $22719102750$ | = | $2 \cdot 3^{14} \cdot 5^{3} \cdot 19 $ |
|
j-invariant: | $j$ | = | \( \frac{428831641421}{181752822} \) | = | $2^{-1} \cdot 3^{-14} \cdot 19^{-1} \cdot 7541^{3}$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.68393505288047401958714014724$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.28157557477194892593695031393$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.9846422224017274$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $3.9738967715438593$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $0.37988880681709634885039979824$ |
|
Real period: | $\Omega$ | ≈ | $1.0874093844015959353249277099$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 28 $ = $ 1\cdot( 2 \cdot 7 )\cdot2\cdot1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
Special value: | $ L'(E,1)$ | ≈ | $2.8916625749342487944567145447 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 2.891662575 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.087409 \cdot 0.379889 \cdot 28}{2^2} \\ & \approx 2.891662575\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 2688 |
|
$ \Gamma_0(N) $-optimal: | no | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 4 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
$3$ | $14$ | $I_{14}$ | split multiplicative | -1 | 1 | 14 | 14 |
$5$ | $2$ | $III$ | additive | -1 | 2 | 3 | 0 |
$19$ | $1$ | $I_{1}$ | nonsplit multiplicative | 1 | 1 | 1 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2B | 2.3.0.1 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 2280 = 2^{3} \cdot 3 \cdot 5 \cdot 19 \), index $12$, genus $0$, and generators
$\left(\begin{array}{rr} 1 & 2 \\ 2 & 5 \end{array}\right),\left(\begin{array}{rr} 761 & 4 \\ 1522 & 9 \end{array}\right),\left(\begin{array}{rr} 1562 & 1 \\ 359 & 0 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 2 & 1 \\ 1139 & 0 \end{array}\right),\left(\begin{array}{rr} 2277 & 4 \\ 2276 & 5 \end{array}\right),\left(\begin{array}{rr} 1828 & 1 \\ 1823 & 0 \end{array}\right),\left(\begin{array}{rr} 1996 & 289 \\ 1425 & 856 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 4 & 1 \end{array}\right),\left(\begin{array}{rr} 3 & 4 \\ 8 & 11 \end{array}\right)$.
The torsion field $K:=\Q(E[2280])$ is a degree-$363095654400$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/2280\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | nonsplit multiplicative | $4$ | \( 95 = 5 \cdot 19 \) |
$3$ | split multiplicative | $4$ | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
$5$ | additive | $10$ | \( 114 = 2 \cdot 3 \cdot 19 \) |
$7$ | good | $2$ | \( 950 = 2 \cdot 5^{2} \cdot 19 \) |
$19$ | nonsplit multiplicative | $20$ | \( 150 = 2 \cdot 3 \cdot 5^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2.
Its isogeny class 2850n
consists of 2 curves linked by isogenies of
degree 2.
Twists
This elliptic curve is its own minimal quadratic twist.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{190}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$4$ | 4.0.684000.3 | \(\Z/4\Z\) | not in database |
$8$ | 8.0.10809345024000000.238 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$8$ | 8.2.5771493546750000.7 | \(\Z/6\Z\) | not in database |
$16$ | deg 16 | \(\Z/8\Z\) | not in database |
$16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | nonsplit | split | add | ss | ord | ord | ord | nonsplit | ss | ord | ss | ord | ord | ord | ss |
$\lambda$-invariant(s) | 2 | 2 | - | 1,1 | 1 | 1 | 1 | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1,1 |
$\mu$-invariant(s) | 0 | 0 | - | 0,0 | 0 | 0 | 0 | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0,0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.