Properties

Label 2850f
Number of curves $1$
Conductor $2850$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 2850f1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(19\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 + 13 T^{2}\) 1.13.a
\(17\) \( 1 - 8 T + 17 T^{2}\) 1.17.ai
\(23\) \( 1 - 3 T + 23 T^{2}\) 1.23.ad
\(29\) \( 1 + T + 29 T^{2}\) 1.29.b
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 2850f do not have complex multiplication.

Modular form 2850.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} + 4 q^{7} - q^{8} + q^{9} - q^{11} - q^{12} - 4 q^{14} + q^{16} + 8 q^{17} - q^{18} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 2850f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
2850.f1 2850f1 \([1, 1, 0, -12825, 577125]\) \(-23891790625/1181952\) \(-11542500000000\) \([]\) \(9600\) \(1.2678\) \(\Gamma_0(N)\)-optimal