Properties

Label 284400.eu
Number of curves $1$
Conductor $284400$
CM no
Rank $1$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("eu1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 284400.eu1 has rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1\)
\(79\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(11\) \( 1 + T + 11 T^{2}\) 1.11.b
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 - T + 17 T^{2}\) 1.17.ab
\(19\) \( 1 - T + 19 T^{2}\) 1.19.ab
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 284400.eu do not have complex multiplication.

Modular form 284400.2.a.eu

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{7} - q^{11} + 2 q^{13} + q^{17} + q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 284400.eu

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
284400.eu1 284400eu1 \([0, 0, 0, -3954675, -3029347150]\) \(-3665123505412225/3272081408\) \(-6106489206865920000\) \([]\) \(6238080\) \(2.5295\) \(\Gamma_0(N)\)-optimal