Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
|
\(y^2+xy+y=x^3-x^2+1859516x+579071833\)
|
(homogenize, simplify) |
|
\(y^2z+xyz+yz^2=x^3-x^2z+1859516xz^2+579071833z^3\)
|
(dehomogenize, simplify) |
|
\(y^2=x^3+29752261x+37090349590\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z \oplus \Z/{2}\Z\)
Mordell-Weil generators
| $P$ | $\hat{h}(P)$ | Order |
|---|---|---|
| $(6434192104671696371/9042362562630244, 40589713659645814730372518785/859850354761618701226472)$ | $44.299886993181251212925258558$ | $\infty$ |
| $(-1189/4, 1185/8)$ | $0$ | $2$ |
Integral points
None
Invariants
| Conductor: | $N$ | = | \( 28322 \) | = | $2 \cdot 7^{2} \cdot 17^{2}$ |
|
| Discriminant: | $\Delta$ | = | $-556602311421681978754$ | = | $-1 \cdot 2 \cdot 7^{14} \cdot 17^{7} $ |
|
| j-invariant: | $j$ | = | \( \frac{250404380127}{196003234} \) | = | $2^{-1} \cdot 3^{3} \cdot 7^{-8} \cdot 11^{3} \cdot 17^{-1} \cdot 191^{3}$ |
|
| Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
| Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
| Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
| Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $2.6686908582123417687005265954$ |
|
||
| Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $0.27912911165657707602308291474$ |
|
||
| $abc$ quality: | $Q$ | ≈ | $0.9883270273272311$ | |||
| Szpiro ratio: | $\sigma_{m}$ | ≈ | $5.357425832397129$ | |||
BSD invariants
| Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
| Mordell-Weil rank: | $r$ | = | $ 1$ |
|
| Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $44.299886993181251212925258558$ |
|
| Real period: | $\Omega$ | ≈ | $0.10536471580291372499242262325$ |
|
| Tamagawa product: | $\prod_{p}c_p$ | = | $ 8 $ = $ 1\cdot2^{2}\cdot2 $ |
|
| Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $2$ |
|
| Special value: | $ L'(E,1)$ | ≈ | $9.3352900062754735196636105244 $ |
|
| Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 9.335290006 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.105365 \cdot 44.299887 \cdot 8}{2^2} \\ & \approx 9.335290006\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
| Modular degree: | 884736 |
|
| $ \Gamma_0(N) $-optimal: | no | |
| Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
| $p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
|---|---|---|---|---|---|---|---|
| $2$ | $1$ | $I_{1}$ | split multiplicative | -1 | 1 | 1 | 1 |
| $7$ | $4$ | $I_{8}^{*}$ | additive | -1 | 2 | 14 | 8 |
| $17$ | $2$ | $I_{1}^{*}$ | additive | 1 | 2 | 7 | 1 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
| prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
|---|---|---|
| $2$ | 2B | 8.12.0.9 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 952 = 2^{3} \cdot 7 \cdot 17 \), index $48$, genus $0$, and generators
$\left(\begin{array}{rr} 543 & 0 \\ 0 & 951 \end{array}\right),\left(\begin{array}{rr} 384 & 133 \\ 427 & 678 \end{array}\right),\left(\begin{array}{rr} 945 & 8 \\ 944 & 9 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 8 & 1 \end{array}\right),\left(\begin{array}{rr} 120 & 875 \\ 259 & 288 \end{array}\right),\left(\begin{array}{rr} 1 & 8 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 4 \\ 4 & 17 \end{array}\right),\left(\begin{array}{rr} 7 & 6 \\ 946 & 947 \end{array}\right),\left(\begin{array}{rr} 904 & 161 \\ 315 & 302 \end{array}\right)$.
The torsion field $K:=\Q(E[952])$ is a degree-$5053612032$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/952\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
| $\ell$ | Reduction type | Serre weight | Serre conductor |
|---|---|---|---|
| $2$ | split multiplicative | $4$ | \( 14161 = 7^{2} \cdot 17^{2} \) |
| $7$ | additive | $32$ | \( 578 = 2 \cdot 17^{2} \) |
| $17$ | additive | $162$ | \( 98 = 2 \cdot 7^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
2 and 4.
Its isogeny class 28322.bb
consists of 4 curves linked by isogenies of
degrees dividing 4.
Twists
The minimal quadratic twist of this elliptic curve is 238.d4, its twist by $-119$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ $\cong \Z/{2}\Z$ are as follows:
| $[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
|---|---|---|---|
| $2$ | \(\Q(\sqrt{-34}) \) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
| $2$ | \(\Q(\sqrt{7}) \) | \(\Z/4\Z\) | not in database |
| $2$ | \(\Q(\sqrt{-238}) \) | \(\Z/4\Z\) | not in database |
| $4$ | \(\Q(\sqrt{7}, \sqrt{-34})\) | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | deg 8 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
| $8$ | 8.4.237380825780224.13 | \(\Z/8\Z\) | not in database |
| $8$ | 8.0.841100226985984.83 | \(\Z/8\Z\) | not in database |
| $8$ | deg 8 | \(\Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/4\Z \oplus \Z/4\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/8\Z\) | not in database |
| $16$ | deg 16 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
| $16$ | deg 16 | \(\Z/12\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
| $p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
| Reduction type | split | ss | ord | add | ss | ord | add | ord | ss | ord | ss | ord | ord | ord | ord |
| $\lambda$-invariant(s) | 10 | 7,5 | 1 | - | 1,1 | 1 | - | 1 | 1,1 | 1 | 1,1 | 1 | 1 | 1 | 1 |
| $\mu$-invariant(s) | 1 | 0,0 | 0 | - | 0,0 | 0 | - | 0 | 0,0 | 0 | 0,0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
$p$-adic regulators are not yet computed for curves that are not $\Gamma_0$-optimal.