Show commands: SageMath
Rank
The elliptic curves in class 28314p have rank \(1\).
L-function data
Bad L-factors: |
| ||||||||||||||||||||||||
Good L-factors: |
| ||||||||||||||||||||||||
See L-function page for more information |
Complex multiplication
The elliptic curves in class 28314p do not have complex multiplication.Modular form 28314.2.a.p
Isogeny matrix
The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.
\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)
Isogeny graph
The vertices are labelled with Cremona labels.
Elliptic curves in class 28314p
LMFDB label | Cremona label | Weierstrass coefficients | j-invariant | Discriminant | Torsion structure | Modular degree | Faltings height | Optimality |
---|---|---|---|---|---|---|---|---|
28314.r4 | 28314p1 | \([1, -1, 0, 391473, 67689837]\) | \(5137417856375/4510142208\) | \(-5824704197266935552\) | \([2]\) | \(552960\) | \(2.2882\) | \(\Gamma_0(N)\)-optimal |
28314.r3 | 28314p2 | \([1, -1, 0, -1960767, 602589213]\) | \(645532578015625/252306960048\) | \(325846357257754702512\) | \([2]\) | \(1105920\) | \(2.6348\) | |
28314.r2 | 28314p3 | \([1, -1, 0, -4067982, -4216062636]\) | \(-5764706497797625/2612665516032\) | \(-3374173827666183979008\) | \([2]\) | \(1658880\) | \(2.8375\) | |
28314.r1 | 28314p4 | \([1, -1, 0, -70976142, -230111392428]\) | \(30618029936661765625/3678951124992\) | \(4751247537443683381248\) | \([2]\) | \(3317760\) | \(3.1841\) |