Properties

Label 28314.r
Number of curves $4$
Conductor $28314$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("r1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 28314.r have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1\)
\(11\)\(1\)
\(13\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 28314.r do not have complex multiplication.

Modular form 28314.2.a.r

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} + q^{4} + 4 q^{7} - q^{8} - q^{13} - 4 q^{14} + q^{16} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 28314.r

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28314.r1 28314p4 \([1, -1, 0, -70976142, -230111392428]\) \(30618029936661765625/3678951124992\) \(4751247537443683381248\) \([2]\) \(3317760\) \(3.1841\)  
28314.r2 28314p3 \([1, -1, 0, -4067982, -4216062636]\) \(-5764706497797625/2612665516032\) \(-3374173827666183979008\) \([2]\) \(1658880\) \(2.8375\)  
28314.r3 28314p2 \([1, -1, 0, -1960767, 602589213]\) \(645532578015625/252306960048\) \(325846357257754702512\) \([2]\) \(1105920\) \(2.6348\)  
28314.r4 28314p1 \([1, -1, 0, 391473, 67689837]\) \(5137417856375/4510142208\) \(-5824704197266935552\) \([2]\) \(552960\) \(2.2882\) \(\Gamma_0(N)\)-optimal