Properties

Label 28224di
Number of curves $4$
Conductor $28224$
CM \(\Q(\sqrt{-3}) \)
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("di1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 28224di have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 5 T^{2}\) 1.5.a
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(17\) \( 1 + 17 T^{2}\) 1.17.a
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 + 23 T^{2}\) 1.23.a
\(29\) \( 1 + 29 T^{2}\) 1.29.a
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

Each elliptic curve in class 28224di has complex multiplication by an order in the imaginary quadratic field \(\Q(\sqrt{-3}) \).

Modular form 28224.2.a.di

Copy content sage:E.q_eigenform(10)
 
\(q + 2 q^{13} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 28224di

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality CM discriminant
28224.di4 28224di1 \([0, 0, 0, 0, 2744]\) \(0\) \(-3252759552\) \([2]\) \(9216\) \(0.50411\) \(\Gamma_0(N)\)-optimal \(-3\)
28224.di2 28224di2 \([0, 0, 0, -2940, 60368]\) \(54000\) \(52044152832\) \([2]\) \(18432\) \(0.85069\)   \(-12\)
28224.di3 28224di3 \([0, 0, 0, 0, -74088]\) \(0\) \(-2371261713408\) \([2]\) \(27648\) \(1.0534\)   \(-3\)
28224.di1 28224di4 \([0, 0, 0, -26460, -1629936]\) \(54000\) \(37940187414528\) \([2]\) \(55296\) \(1.4000\)   \(-12\)