Minimal Weierstrass equation
Minimal Weierstrass equation
Simplified equation
\(y^2=x^3-84x-56\)
|
(homogenize, simplify) |
\(y^2z=x^3-84xz^2-56z^3\)
|
(dehomogenize, simplify) |
\(y^2=x^3-84x-56\)
|
(homogenize, minimize) |
Mordell-Weil group structure
\(\Z\)
Mordell-Weil generators
$P$ | $\hat{h}(P)$ | Order |
---|---|---|
$(-3, 13)$ | $2.3057006702199985191259265579$ | $\infty$ |
Integral points
\((-3,\pm 13)\)
Invariants
Conductor: | $N$ | = | \( 28224 \) | = | $2^{6} \cdot 3^{2} \cdot 7^{2}$ |
|
Discriminant: | $\Delta$ | = | $36578304$ | = | $2^{10} \cdot 3^{6} \cdot 7^{2} $ |
|
j-invariant: | $j$ | = | \( 1792 \) | = | $2^{8} \cdot 7$ |
|
Endomorphism ring: | $\mathrm{End}(E)$ | = | $\Z$ | |||
Geometric endomorphism ring: | $\mathrm{End}(E_{\overline{\Q}})$ | = | \(\Z\) (no potential complex multiplication) |
|
||
Sato-Tate group: | $\mathrm{ST}(E)$ | = | $\mathrm{SU}(2)$ | |||
Faltings height: | $h_{\mathrm{Faltings}}$ | ≈ | $0.14153881207259124459755305115$ |
|
||
Stable Faltings height: | $h_{\mathrm{stable}}$ | ≈ | $-1.3097083409039702431319884591$ |
|
||
$abc$ quality: | $Q$ | ≈ | $0.8915192755066496$ | |||
Szpiro ratio: | $\sigma_{m}$ | ≈ | $2.430350167308767$ |
BSD invariants
Analytic rank: | $r_{\mathrm{an}}$ | = | $ 1$ |
|
Mordell-Weil rank: | $r$ | = | $ 1$ |
|
Regulator: | $\mathrm{Reg}(E/\Q)$ | ≈ | $2.3057006702199985191259265579$ |
|
Real period: | $\Omega$ | ≈ | $1.6928504495526827981153665668$ |
|
Tamagawa product: | $\prod_{p}c_p$ | = | $ 1 $ |
|
Torsion order: | $\#E(\Q)_{\mathrm{tor}}$ | = | $1$ |
|
Special value: | $ L'(E,1)$ | ≈ | $3.9032064161158465199153246887 $ |
|
Analytic order of Ш: | Ш${}_{\mathrm{an}}$ | ≈ | $1$ (rounded) |
|
BSD formula
$$\begin{aligned} 3.903206416 \approx L'(E,1) & = \frac{\# ะจ(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 1.692850 \cdot 2.305701 \cdot 1}{1^2} \\ & \approx 3.903206416\end{aligned}$$
Modular invariants
For more coefficients, see the Downloads section to the right.
Modular degree: | 5760 |
|
$ \Gamma_0(N) $-optimal: | yes | |
Manin constant: | 1 |
|
Local data at primes of bad reduction
This elliptic curve is not semistable. There are 3 primes $p$ of bad reduction:
$p$ | Tamagawa number | Kodaira symbol | Reduction type | Root number | $\mathrm{ord}_p(N)$ | $\mathrm{ord}_p(\Delta)$ | $\mathrm{ord}_p(\mathrm{den}(j))$ |
---|---|---|---|---|---|---|---|
$2$ | $1$ | $I_0^{*}$ | additive | 1 | 6 | 10 | 0 |
$3$ | $1$ | $I_0^{*}$ | additive | -1 | 2 | 6 | 0 |
$7$ | $1$ | $II$ | additive | -1 | 2 | 2 | 0 |
Galois representations
The $\ell$-adic Galois representation has maximal image for all primes $\ell$ except those listed in the table below.
prime $\ell$ | mod-$\ell$ image | $\ell$-adic image |
---|---|---|
$2$ | 2Cn | 2.2.0.1 |
$3$ | 3B | 9.12.0.2 |
The image $H:=\rho_E(\Gal(\overline{\Q}/\Q))$ of the adelic Galois representation has level \( 504 = 2^{3} \cdot 3^{2} \cdot 7 \), index $864$, genus $28$, and generators
$\left(\begin{array}{rr} 485 & 468 \\ 462 & 305 \end{array}\right),\left(\begin{array}{rr} 1 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 36 & 1 \end{array}\right),\left(\begin{array}{rr} 31 & 6 \\ 364 & 103 \end{array}\right),\left(\begin{array}{rr} 251 & 0 \\ 0 & 503 \end{array}\right),\left(\begin{array}{rr} 287 & 468 \\ 288 & 467 \end{array}\right),\left(\begin{array}{rr} 469 & 36 \\ 468 & 37 \end{array}\right),\left(\begin{array}{rr} 29 & 36 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 19 & 36 \\ 294 & 451 \end{array}\right),\left(\begin{array}{rr} 358 & 471 \\ 383 & 433 \end{array}\right),\left(\begin{array}{rr} 127 & 36 \\ 18 & 145 \end{array}\right)$.
The torsion field $K:=\Q(E[504])$ is a degree-$13934592$ Galois extension of $\Q$ with $\Gal(K/\Q)$ isomorphic to the projection of $H$ to $\GL_2(\Z/504\Z)$.
The table below list all primes $\ell$ for which the Serre invariants associated to the mod-$\ell$ Galois representation are exceptional.
$\ell$ | Reduction type | Serre weight | Serre conductor |
---|---|---|---|
$2$ | additive | $2$ | \( 441 = 3^{2} \cdot 7^{2} \) |
$3$ | additive | $2$ | \( 3136 = 2^{6} \cdot 7^{2} \) |
$7$ | additive | $14$ | \( 576 = 2^{6} \cdot 3^{2} \) |
Isogenies
This curve has non-trivial cyclic isogenies of degree $d$ for $d=$
3.
Its isogeny class 28224cp
consists of 2 curves linked by isogenies of
degree 3.
Twists
The minimal quadratic twist of this elliptic curve is 196a1, its twist by $-24$.
Growth of torsion in number fields
The number fields $K$ of degree less than 24 such that $E(K)_{\rm tors}$ is strictly larger than $E(\Q)_{\rm tors}$ (which is trivial) are as follows:
$[K:\Q]$ | $K$ | $E(K)_{\rm tors}$ | Base change curve |
---|---|---|---|
$2$ | \(\Q(\sqrt{42}) \) | \(\Z/3\Z\) | not in database |
$3$ | \(\Q(\zeta_{7})^+\) | \(\Z/2\Z \oplus \Z/2\Z\) | not in database |
$6$ | 6.0.309786624.1 | \(\Z/3\Z\) | not in database |
$6$ | 6.6.232339968.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
$12$ | deg 12 | \(\Z/2\Z \oplus \Z/4\Z\) | not in database |
$12$ | deg 12 | \(\Z/3\Z \oplus \Z/3\Z\) | not in database |
$18$ | 18.6.802697202857257993500622848.1 | \(\Z/2\Z \oplus \Z/18\Z\) | not in database |
$18$ | 18.0.29729526031750296055578624.1 | \(\Z/2\Z \oplus \Z/6\Z\) | not in database |
We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.
Iwasawa invariants
$p$ | 2 | 3 | 5 | 7 | 11 | 13 | 17 | 19 | 23 | 29 | 31 | 37 | 41 | 43 | 47 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Reduction type | add | add | ord | add | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord | ord |
$\lambda$-invariant(s) | - | - | 1 | - | 1 | 1 | 1 | 3 | 1 | 1 | 1 | 1 | 1 | 1 | 1 |
$\mu$-invariant(s) | - | - | 0 | - | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 | 0 |
An entry - indicates that the invariants are not computed because the reduction is additive.
$p$-adic regulators
Note: $p$-adic regulator data only exists for primes $p\ge 5$ of good ordinary reduction.