Properties

Label 282240.dh
Number of curves $1$
Conductor $282240$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("dh1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 282240.dh1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1\)
\(5\)\(1 + T\)
\(7\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 - T + 11 T^{2}\) 1.11.ab
\(13\) \( 1 + 5 T + 13 T^{2}\) 1.13.f
\(17\) \( 1 + 8 T + 17 T^{2}\) 1.17.i
\(19\) \( 1 - 5 T + 19 T^{2}\) 1.19.af
\(23\) \( 1 - T + 23 T^{2}\) 1.23.ab
\(29\) \( 1 + 6 T + 29 T^{2}\) 1.29.g
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 282240.dh do not have complex multiplication.

Modular form 282240.2.a.dh

Copy content sage:E.q_eigenform(10)
 
\(q - q^{5} + q^{11} - 5 q^{13} - 8 q^{17} + 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 282240.dh

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
282240.dh1 282240dh1 \([0, 0, 0, -102753, -12678498]\) \(-26240594230368/1953125\) \(-8930250000000\) \([]\) \(1161216\) \(1.5348\) \(\Gamma_0(N)\)-optimal