Properties

Label 281775bz2
Conductor 281775281775
Discriminant 1.045×10191.045\times 10^{19}
j-invariant 16828803576127720225 \frac{168288035761}{27720225}
CM no
Rank 00
Torsion structure Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Related objects

Downloads

Learn more

Show commands: Magma / Oscar / Pari/GP / SageMath

Minimal Weierstrass equation

Minimal Weierstrass equation

Simplified equation

y2+xy+y=x3831026x+246553823y^2+xy+y=x^3-831026x+246553823 Copy content Toggle raw display (homogenize, simplify)
y2z+xyz+yz2=x3831026xz2+246553823z3y^2z+xyz+yz^2=x^3-831026xz^2+246553823z^3 Copy content Toggle raw display (dehomogenize, simplify)
y2=x31077009075x+11506446204750y^2=x^3-1077009075x+11506446204750 Copy content Toggle raw display (homogenize, minimize)

Copy content comment:Define the curve
 
Copy content sage:E = EllipticCurve([1, 0, 1, -831026, 246553823])
 
Copy content gp:E = ellinit([1, 0, 1, -831026, 246553823])
 
Copy content magma:E := EllipticCurve([1, 0, 1, -831026, 246553823]);
 
Copy content oscar:E = elliptic_curve([1, 0, 1, -831026, 246553823])
 
Copy content comment:Simplified equation
 
Copy content sage:E.short_weierstrass_model()
 
Copy content magma:WeierstrassModel(E);
 
Copy content oscar:short_weierstrass_model(E)
 

Mordell-Weil group structure

Z/2ZZ/2Z\Z/{2}\Z \oplus \Z/{2}\Z

Copy content comment:Mordell-Weil group
 
Copy content magma:MordellWeilGroup(E);
 

Mordell-Weil generators

PPh^(P)\hat{h}(P)Order
(347,174)(347, -174)0022
(687,344)(687, -344)0022

Integral points

(347,174) \left(347, -174\right) , (687,344) \left(687, -344\right) Copy content Toggle raw display

Copy content comment:Integral points
 
Copy content sage:E.integral_points()
 
Copy content magma:IntegralPoints(E);
 

Invariants

Conductor: NN  =  281775 281775  = 352131723 \cdot 5^{2} \cdot 13 \cdot 17^{2}
Copy content comment:Conductor
 
Copy content sage:E.conductor().factor()
 
Copy content gp:ellglobalred(E)[1]
 
Copy content magma:Conductor(E);
 
Copy content oscar:conductor(E)
 
Discriminant: Δ\Delta  =  1045466943176601562510454669431766015625 = 38581321763^{8} \cdot 5^{8} \cdot 13^{2} \cdot 17^{6}
Copy content comment:Discriminant
 
Copy content sage:E.discriminant().factor()
 
Copy content gp:E.disc
 
Copy content magma:Discriminant(E);
 
Copy content oscar:discriminant(E)
 
j-invariant: jj  =  16828803576127720225 \frac{168288035761}{27720225}  = 3852132552133^{-8} \cdot 5^{-2} \cdot 13^{-2} \cdot 5521^{3}
Copy content comment:j-invariant
 
Copy content sage:E.j_invariant().factor()
 
Copy content gp:E.j
 
Copy content magma:jInvariant(E);
 
Copy content oscar:j_invariant(E)
 
Endomorphism ring: End(E)\mathrm{End}(E) = Z\Z
Geometric endomorphism ring: End(EQ)\mathrm{End}(E_{\overline{\Q}})  =  Z\Z    (no potential complex multiplication)
Copy content comment:Potential complex multiplication
 
Copy content sage:E.has_cm()
 
Copy content magma:HasComplexMultiplication(E);
 
Sato-Tate group: ST(E)\mathrm{ST}(E) = SU(2)\mathrm{SU}(2)
Faltings height: hFaltingsh_{\mathrm{Faltings}} ≈ 2.37102192519987415027349566692.3710219251998741502734956669
Copy content comment:Faltings height
 
Copy content gp:ellheight(E)
 
Copy content magma:FaltingsHeight(E);
 
Copy content oscar:faltings_height(E)
 
Stable Faltings height: hstableh_{\mathrm{stable}} ≈ 0.149696296954715922848348691350.14969629695471592284834869135
Copy content comment:Stable Faltings height
 
Copy content magma:StableFaltingsHeight(E);
 
Copy content oscar:stable_faltings_height(E)
 
abcabc quality: QQ ≈ 1.01793374331505571.0179337433150557
Szpiro ratio: σm\sigma_{m} ≈ 4.1840320940661664.184032094066166

BSD invariants

Analytic rank: ranr_{\mathrm{an}} = 0 0
Copy content comment:Analytic rank
 
Copy content sage:E.analytic_rank()
 
Copy content gp:ellanalyticrank(E)
 
Copy content magma:AnalyticRank(E);
 
Mordell-Weil rank: rr = 0 0
Copy content comment:Mordell-Weil rank
 
Copy content sage:E.rank()
 
Copy content gp:[lower,upper] = ellrank(E)
 
Copy content magma:Rank(E);
 
Regulator: Reg(E/Q)\mathrm{Reg}(E/\Q) = 11
Copy content comment:Regulator
 
Copy content sage:E.regulator()
 
Copy content gp:G = E.gen \\ if available matdet(ellheightmatrix(E,G))
 
Copy content magma:Regulator(E);
 
Real period: Ω\Omega ≈ 0.218169593949284770241574633250.21816959394928477024157463325
Copy content comment:Real Period
 
Copy content sage:E.period_lattice().omega()
 
Copy content gp:if(E.disc>0,2,1)*E.omega[1]
 
Copy content magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
 
Tamagawa product: pcp\prod_{p}c_p = 256 256  = 2322222 2^{3}\cdot2^{2}\cdot2\cdot2^{2}
Copy content comment:Tamagawa numbers
 
Copy content sage:E.tamagawa_numbers()
 
Copy content gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
 
Copy content magma:TamagawaNumbers(E);
 
Copy content oscar:tamagawa_numbers(E)
 
Torsion order: #E(Q)tor\#E(\Q)_{\mathrm{tor}} = 44
Copy content comment:Torsion order
 
Copy content sage:E.torsion_order()
 
Copy content gp:elltors(E)[1]
 
Copy content magma:Order(TorsionSubgroup(E));
 
Copy content oscar:prod(torsion_structure(E)[1])
 
Special value: L(E,1) L(E,1) ≈ 3.49071350318855632386519413193.4907135031885563238651941319
Copy content comment:Special L-value
 
Copy content sage:r = E.rank(); E.lseries().dokchitser().derivative(1,r)/r.factorial()
 
Copy content gp:[r,L1r] = ellanalyticrank(E); L1r/r!
 
Copy content magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
 
Analytic order of Ш: Шan{}_{\mathrm{an}}  =  11    (exact)
Copy content comment:Order of Sha
 
Copy content sage:E.sha().an_numerical()
 
Copy content magma:MordellWeilShaInformation(E);
 

BSD formula

3.490713503L(E,1)=#Ш(E/Q)ΩEReg(E/Q)pcp#E(Q)tor210.2181701.000000256423.490713503\begin{aligned} 3.490713503 \approx L(E,1) & = \frac{\# Ш(E/\Q)\cdot \Omega_E \cdot \mathrm{Reg}(E/\Q) \cdot \prod_p c_p}{\#E(\Q)_{\rm tor}^2} \\ & \approx \frac{1 \cdot 0.218170 \cdot 1.000000 \cdot 256}{4^2} \\ & \approx 3.490713503\end{aligned}

Copy content comment:BSD formula
 
Copy content sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha) E = EllipticCurve([1, 0, 1, -831026, 246553823]); r = E.rank(); ar = E.analytic_rank(); assert r == ar; Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical(); omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order(); assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
 
Copy content magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */ E := EllipticCurve([1, 0, 1, -831026, 246553823]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar; sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1); reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E); assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
 

Modular invariants

Modular form 281775.2.a.bz

q+q2+q3q4+q63q8+q94q11q12q13q16+q184q19+O(q20) q + q^{2} + q^{3} - q^{4} + q^{6} - 3 q^{8} + q^{9} - 4 q^{11} - q^{12} - q^{13} - q^{16} + q^{18} - 4 q^{19} + O(q^{20}) Copy content Toggle raw display

Copy content comment:q-expansion of modular form
 
Copy content sage:E.q_eigenform(20)
 
Copy content gp:\\ actual modular form, use for small N [mf,F] = mffromell(E) Ser(mfcoefs(mf,20),q) \\ or just the series Ser(ellan(E,20),q)*q
 
Copy content magma:ModularForm(E);
 

For more coefficients, see the Downloads section to the right.

Modular degree: 5898240
Copy content comment:Modular degree
 
Copy content sage:E.modular_degree()
 
Copy content gp:ellmoddegree(E)
 
Copy content magma:ModularDegree(E);
 
Γ0(N) \Gamma_0(N) -optimal: no
Manin constant: 1
Copy content comment:Manin constant
 
Copy content magma:ManinConstant(E);
 

Local data at primes of bad reduction

This elliptic curve is not semistable. There are 4 primes pp of bad reduction:

pp Tamagawa number Kodaira symbol Reduction type Root number ordp(N)\mathrm{ord}_p(N) ordp(Δ)\mathrm{ord}_p(\Delta) ordp(den(j))\mathrm{ord}_p(\mathrm{den}(j))
33 88 I8I_{8} split multiplicative -1 1 8 8
55 44 I2I_{2}^{*} additive 1 2 8 2
1313 22 I2I_{2} nonsplit multiplicative 1 1 2 2
1717 44 I0I_0^{*} additive 1 2 6 0

Copy content comment:Local data
 
Copy content sage:E.local_data()
 
Copy content gp:ellglobalred(E)[5]
 
Copy content magma:[LocalInformation(E,p) : p in BadPrimes(E)];
 
Copy content oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
 

Galois representations

The \ell-adic Galois representation has maximal image for all primes \ell except those listed in the table below.

prime \ell mod-\ell image \ell-adic image
22 2Cs 8.24.0.23

Copy content comment:Mod p Galois image
 
Copy content sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
 
Copy content magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
 

Copy content comment:Adelic image of Galois representation
 
Copy content sage:gens = [[53025, 16, 53024, 17], [1, 16, 0, 1], [31213, 3128, 49130, 9317], [3129, 3128, 26996, 37401], [28085, 6256, 28084, 17953], [1, 0, 16, 1], [18087, 46784, 11662, 24615], [18735, 3128, 16048, 20129], [1, 16, 4, 65], [40559, 0, 0, 53039]] GL(2,Integers(53040)).subgroup(gens)
 
Copy content magma:Gens := [[53025, 16, 53024, 17], [1, 16, 0, 1], [31213, 3128, 49130, 9317], [3129, 3128, 26996, 37401], [28085, 6256, 28084, 17953], [1, 0, 16, 1], [18087, 46784, 11662, 24615], [18735, 3128, 16048, 20129], [1, 16, 4, 65], [40559, 0, 0, 53039]]; sub<GL(2,Integers(53040))|Gens>;
 

The image H:=ρE(Gal(Q/Q))H:=\rho_E(\Gal(\overline{\Q}/\Q)) of the adelic Galois representation has level 53040=24351317 53040 = 2^{4} \cdot 3 \cdot 5 \cdot 13 \cdot 17 , index 768768, genus 1313, and generators

(53025165302417),(11601),(312133128491309317),(312931282699637401),(2808562562808417953),(10161),(18087467841166224615),(1873531281604820129),(116465),(405590053039)\left(\begin{array}{rr} 53025 & 16 \\ 53024 & 17 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 0 & 1 \end{array}\right),\left(\begin{array}{rr} 31213 & 3128 \\ 49130 & 9317 \end{array}\right),\left(\begin{array}{rr} 3129 & 3128 \\ 26996 & 37401 \end{array}\right),\left(\begin{array}{rr} 28085 & 6256 \\ 28084 & 17953 \end{array}\right),\left(\begin{array}{rr} 1 & 0 \\ 16 & 1 \end{array}\right),\left(\begin{array}{rr} 18087 & 46784 \\ 11662 & 24615 \end{array}\right),\left(\begin{array}{rr} 18735 & 3128 \\ 16048 & 20129 \end{array}\right),\left(\begin{array}{rr} 1 & 16 \\ 4 & 65 \end{array}\right),\left(\begin{array}{rr} 40559 & 0 \\ 0 & 53039 \end{array}\right).

Input positive integer mm to see the generators of the reduction of HH to GL2(Z/mZ)\mathrm{GL}_2(\Z/m\Z):

The torsion field K:=Q(E[53040])K:=\Q(E[53040]) is a degree-15136578758246401513657875824640 Galois extension of Q\Q with Gal(K/Q)\Gal(K/\Q) isomorphic to the projection of HH to GL2(Z/53040Z)\GL_2(\Z/53040\Z).

The table below list all primes \ell for which the Serre invariants associated to the mod-\ell Galois representation are exceptional.

\ell Reduction type Serre weight Serre conductor
22 good 22 7225=52172 7225 = 5^{2} \cdot 17^{2}
33 split multiplicative 44 93925=5213172 93925 = 5^{2} \cdot 13 \cdot 17^{2}
55 additive 1818 11271=313172 11271 = 3 \cdot 13 \cdot 17^{2}
1313 nonsplit multiplicative 1414 21675=352172 21675 = 3 \cdot 5^{2} \cdot 17^{2}
1717 additive 146146 975=35213 975 = 3 \cdot 5^{2} \cdot 13

Isogenies

Copy content comment:Isogenies
 
Copy content gp:ellisomat(E)
 

This curve has non-trivial cyclic isogenies of degree dd for d=d= 2, 4 and 8.
Its isogeny class 281775bz consists of 8 curves linked by isogenies of degrees dividing 16.

Twists

The minimal quadratic twist of this elliptic curve is 195a2, its twist by 8585.

Growth of torsion in number fields

The number fields KK of degree less than 24 such that E(K)torsE(K)_{\rm tors} is strictly larger than E(Q)torsE(\Q)_{\rm tors} Z/2ZZ/2Z\cong \Z/{2}\Z \oplus \Z/{2}\Z are as follows:

[K:Q][K:\Q] KK E(K)torsE(K)_{\rm tors} Base change curve
22 Q(85)\Q(\sqrt{85}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(65,85)\Q(\sqrt{-65}, \sqrt{-85}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(65,85)\Q(\sqrt{65}, \sqrt{-85}) Z/2ZZ/4Z\Z/2\Z \oplus \Z/4\Z not in database
44 Q(13,85)\Q(\sqrt{13}, \sqrt{85}) Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 8.0.381670924960000.11 Z/4ZZ/4Z\Z/4\Z \oplus \Z/4\Z not in database
88 8.0.13363360000.1 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
88 deg 8 Z/2ZZ/6Z\Z/2\Z \oplus \Z/6\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/8Z\Z/2\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/4ZZ/8Z\Z/4\Z \oplus \Z/8\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/16Z\Z/2\Z \oplus \Z/16\Z not in database
1616 deg 16 Z/2ZZ/12Z\Z/2\Z \oplus \Z/12\Z not in database

We only show fields where the torsion growth is primitive. For fields not in the database, click on the degree shown to reveal the defining polynomial.

Iwasawa invariants

No Iwasawa invariant data is available for this curve.

pp-adic regulators

All pp-adic regulators are identically 11 since the rank is 00.