y2+xy+y=x3−831026x+246553823
|
(homogenize, simplify) |
y2z+xyz+yz2=x3−831026xz2+246553823z3
|
(dehomogenize, simplify) |
y2=x3−1077009075x+11506446204750
|
(homogenize, minimize) |
sage:E = EllipticCurve([1, 0, 1, -831026, 246553823])
gp:E = ellinit([1, 0, 1, -831026, 246553823])
magma:E := EllipticCurve([1, 0, 1, -831026, 246553823]);
oscar:E = elliptic_curve([1, 0, 1, -831026, 246553823])
sage:E.short_weierstrass_model()
magma:WeierstrassModel(E);
oscar:short_weierstrass_model(E)
Z/2Z⊕Z/2Z
magma:MordellWeilGroup(E);
| P | h^(P) | Order |
| (347,−174) | 0 | 2 |
| (687,−344) | 0 | 2 |
(347,−174), (687,−344)
sage:E.integral_points()
magma:IntegralPoints(E);
Invariants
| Conductor: |
N |
= |
281775 | = | 3⋅52⋅13⋅172 |
sage:E.conductor().factor()
gp:ellglobalred(E)[1]
magma:Conductor(E);
oscar:conductor(E)
|
| Discriminant: |
Δ |
= |
10454669431766015625 | = | 38⋅58⋅132⋅176 |
sage:E.discriminant().factor()
gp:E.disc
magma:Discriminant(E);
oscar:discriminant(E)
|
| j-invariant: |
j |
= |
27720225168288035761 | = | 3−8⋅5−2⋅13−2⋅55213 |
sage:E.j_invariant().factor()
gp:E.j
magma:jInvariant(E);
oscar:j_invariant(E)
|
| Endomorphism ring: |
End(E) | = | Z |
| Geometric endomorphism ring: |
End(EQ) |
= |
Z
(no potential complex multiplication)
|
sage:E.has_cm()
magma:HasComplexMultiplication(E);
|
| Sato-Tate group: |
ST(E) | = | SU(2) |
| Faltings height: |
hFaltings | ≈ | 2.3710219251998741502734956669 |
gp:ellheight(E)
magma:FaltingsHeight(E);
oscar:faltings_height(E)
|
| Stable Faltings height: |
hstable | ≈ | 0.14969629695471592284834869135 |
magma:StableFaltingsHeight(E);
oscar:stable_faltings_height(E)
|
| abc quality: |
Q | ≈ | 1.0179337433150557 |
|
| Szpiro ratio: |
σm | ≈ | 4.184032094066166 |
|
| Analytic rank: |
ran | = | 0
|
sage:E.analytic_rank()
gp:ellanalyticrank(E)
magma:AnalyticRank(E);
|
| Mordell-Weil rank: |
r | = | 0
|
sage:E.rank()
gp:[lower,upper] = ellrank(E)
magma:Rank(E);
|
| Regulator: |
Reg(E/Q) | = | 1 |
sage:E.regulator()
gp:G = E.gen \\ if available
matdet(ellheightmatrix(E,G))
magma:Regulator(E);
|
| Real period: |
Ω | ≈ | 0.21816959394928477024157463325 |
sage:E.period_lattice().omega()
gp:if(E.disc>0,2,1)*E.omega[1]
magma:(Discriminant(E) gt 0 select 2 else 1) * RealPeriod(E);
|
| Tamagawa product: |
∏pcp | = | 256
= 23⋅22⋅2⋅22
|
sage:E.tamagawa_numbers()
gp:gr=ellglobalred(E); [[gr[4][i,1],gr[5][i][4]] | i<-[1..#gr[4][,1]]]
magma:TamagawaNumbers(E);
oscar:tamagawa_numbers(E)
|
| Torsion order: |
#E(Q)tor | = | 4 |
sage:E.torsion_order()
gp:elltors(E)[1]
magma:Order(TorsionSubgroup(E));
oscar:prod(torsion_structure(E)[1])
|
| Special value: |
L(E,1) | ≈ | 3.4907135031885563238651941319 |
sage:r = E.rank();
E.lseries().dokchitser().derivative(1,r)/r.factorial()
gp:[r,L1r] = ellanalyticrank(E); L1r/r!
magma:Lr1 where r,Lr1 := AnalyticRank(E: Precision:=12);
|
| Analytic order of Ш: |
Шan |
= |
1
(exact)
|
sage:E.sha().an_numerical()
magma:MordellWeilShaInformation(E);
|
3.490713503≈L(E,1)=#E(Q)tor2#Ш(E/Q)⋅ΩE⋅Reg(E/Q)⋅∏pcp≈421⋅0.218170⋅1.000000⋅256≈3.490713503
sage:# self-contained SageMath code snippet for the BSD formula (checks rank, computes analytic sha)
E = EllipticCurve([1, 0, 1, -831026, 246553823]); r = E.rank(); ar = E.analytic_rank(); assert r == ar;
Lr1 = E.lseries().dokchitser().derivative(1,r)/r.factorial(); sha = E.sha().an_numerical();
omega = E.period_lattice().omega(); reg = E.regulator(); tam = E.tamagawa_product(); tor = E.torsion_order();
assert r == ar; print("analytic sha: " + str(RR(Lr1) * tor^2 / (omega * reg * tam)))
magma:/* self-contained Magma code snippet for the BSD formula (checks rank, computes analytic sha) */
E := EllipticCurve([1, 0, 1, -831026, 246553823]); r := Rank(E); ar,Lr1 := AnalyticRank(E: Precision := 12); assert r eq ar;
sha := MordellWeilShaInformation(E); omega := RealPeriod(E) * (Discriminant(E) gt 0 select 2 else 1);
reg := Regulator(E); tam := &*TamagawaNumbers(E); tor := #TorsionSubgroup(E);
assert r eq ar; print "analytic sha:", Lr1 * tor^2 / (omega * reg * tam);
Modular form
281775.2.a.bz
q+q2+q3−q4+q6−3q8+q9−4q11−q12−q13−q16+q18−4q19+O(q20)
sage:E.q_eigenform(20)
gp:\\ actual modular form, use for small N
[mf,F] = mffromell(E)
Ser(mfcoefs(mf,20),q)
\\ or just the series
Ser(ellan(E,20),q)*q
magma:ModularForm(E);
For more coefficients, see the Downloads section to the right.
This elliptic curve is not semistable.
There
are 4 primes p
of bad reduction:
sage:E.local_data()
gp:ellglobalred(E)[5]
magma:[LocalInformation(E,p) : p in BadPrimes(E)];
oscar:[(p,tamagawa_number(E,p), kodaira_symbol(E,p), reduction_type(E,p)) for p in bad_primes(E)]
The ℓ-adic Galois representation has maximal image
for all primes ℓ except those listed in the table below.
sage:rho = E.galois_representation(); [rho.image_type(p) for p in rho.non_surjective()]
magma:[GaloisRepresentation(E,p): p in PrimesUpTo(20)];
sage:gens = [[53025, 16, 53024, 17], [1, 16, 0, 1], [31213, 3128, 49130, 9317], [3129, 3128, 26996, 37401], [28085, 6256, 28084, 17953], [1, 0, 16, 1], [18087, 46784, 11662, 24615], [18735, 3128, 16048, 20129], [1, 16, 4, 65], [40559, 0, 0, 53039]]
GL(2,Integers(53040)).subgroup(gens)
magma:Gens := [[53025, 16, 53024, 17], [1, 16, 0, 1], [31213, 3128, 49130, 9317], [3129, 3128, 26996, 37401], [28085, 6256, 28084, 17953], [1, 0, 16, 1], [18087, 46784, 11662, 24615], [18735, 3128, 16048, 20129], [1, 16, 4, 65], [40559, 0, 0, 53039]];
sub<GL(2,Integers(53040))|Gens>;
The image H:=ρE(Gal(Q/Q)) of the adelic Galois representation has
level 53040=24⋅3⋅5⋅13⋅17, index 768, genus 13, and generators
(53025530241617),(10161),(312134913031289317),(312926996312837401),(2808528084625617953),(11601),(18087116624678424615),(1873516048312820129),(141665),(405590053039).
The torsion field K:=Q(E[53040]) is a degree-1513657875824640 Galois extension of Q with Gal(K/Q) isomorphic to the projection of H to GL2(Z/53040Z).
The table below list all primes ℓ for which the Serre invariants associated to the mod-ℓ Galois representation are exceptional.
| ℓ |
Reduction type |
Serre weight |
Serre conductor |
| 2 |
good |
2 |
7225=52⋅172 |
| 3 |
split multiplicative |
4 |
93925=52⋅13⋅172 |
| 5 |
additive |
18 |
11271=3⋅13⋅172 |
| 13 |
nonsplit multiplicative |
14 |
21675=3⋅52⋅172 |
| 17 |
additive |
146 |
975=3⋅52⋅13 |
gp:ellisomat(E)
This curve has non-trivial cyclic isogenies of degree d for d=
2, 4 and 8.
Its isogeny class 281775bz
consists of 8 curves linked by isogenies of
degrees dividing 16.
The minimal quadratic twist of this elliptic curve is
195a2, its twist by 85.
The number fields K of degree less than 24 such that
E(K)tors is strictly larger than E(Q)tors
≅Z/2Z⊕Z/2Z
are as follows:
We only show fields where the torsion growth is primitive.
For fields not in the database, click on the degree shown to reveal the defining polynomial.
No Iwasawa invariant data is available for this curve.
p-adic regulators
All p-adic regulators are identically 1 since the rank is 0.