Properties

Label 281775.m
Number of curves $1$
Conductor $281775$
CM no
Rank $2$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("m1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 281775.m1 has rank \(2\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1\)
\(13\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(11\) \( 1 - 3 T + 11 T^{2}\) 1.11.ad
\(19\) \( 1 + 5 T + 19 T^{2}\) 1.19.f
\(23\) \( 1 + 3 T + 23 T^{2}\) 1.23.d
\(29\) \( 1 - 9 T + 29 T^{2}\) 1.29.aj
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 281775.m do not have complex multiplication.

Modular form 281775.2.a.m

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} + q^{6} - 2 q^{7} + 3 q^{8} + q^{9} + 3 q^{11} + q^{12} + q^{13} + 2 q^{14} - q^{16} - q^{18} - 5 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 281775.m

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
281775.m1 281775m1 \([1, 1, 1, -4919653, 4201417556]\) \(-15101696859749/14414517\) \(-12569021777646374625\) \([]\) \(9870336\) \(2.5865\) \(\Gamma_0(N)\)-optimal