Properties

Label 281358cz
Number of curves $4$
Conductor $281358$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cz1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 281358cz have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 - T\)
\(3\)\(1\)
\(7\)\(1\)
\(11\)\(1 + T\)
\(29\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 + 2 T + 5 T^{2}\) 1.5.c
\(13\) \( 1 + 2 T + 13 T^{2}\) 1.13.c
\(17\) \( 1 + 2 T + 17 T^{2}\) 1.17.c
\(19\) \( 1 - 4 T + 19 T^{2}\) 1.19.ae
\(23\) \( 1 - 8 T + 23 T^{2}\) 1.23.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 281358cz do not have complex multiplication.

Modular form 281358.2.a.cz

Copy content sage:E.q_eigenform(10)
 
\(q + q^{2} + q^{4} - 2 q^{5} + q^{8} - 2 q^{10} - q^{11} - 2 q^{13} + q^{16} - 2 q^{17} + 4 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 4 & 4 \\ 2 & 1 & 2 & 2 \\ 4 & 2 & 1 & 4 \\ 4 & 2 & 4 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 281358cz

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
281358.cz4 281358cz1 \([1, -1, 1, 16969, 1264911]\) \(6300872423/11759616\) \(-1008576648769536\) \([2]\) \(1179648\) \(1.5636\) \(\Gamma_0(N)\)-optimal
281358.cz3 281358cz2 \([1, -1, 1, -124151, 13401231]\) \(2467489596697/527529024\) \(45244118103395904\) \([2, 2]\) \(2359296\) \(1.9102\)  
281358.cz1 281358cz3 \([1, -1, 1, -1870511, 985075935]\) \(8438952173768857/560166552\) \(48043312278984792\) \([2]\) \(4718592\) \(2.2568\)  
281358.cz2 281358cz4 \([1, -1, 1, -635711, -183242433]\) \(331273336732057/22285827432\) \(1911368972118031272\) \([2]\) \(4718592\) \(2.2568\)