Properties

Label 28050.i
Number of curves $1$
Conductor $28050$
CM no
Rank $0$

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("i1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curve 28050.i1 has rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1 + T\)
\(3\)\(1 + T\)
\(5\)\(1\)
\(11\)\(1 - T\)
\(17\)\(1 - T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 + 2 T + 7 T^{2}\) 1.7.c
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(19\) \( 1 + 8 T + 19 T^{2}\) 1.19.i
\(23\) \( 1 - 9 T + 23 T^{2}\) 1.23.aj
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 28050.i do not have complex multiplication.

Modular form 28050.2.a.i

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} + q^{4} + q^{6} - 2 q^{7} - q^{8} + q^{9} + q^{11} - q^{12} - 4 q^{13} + 2 q^{14} + q^{16} + q^{17} - q^{18} - 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Elliptic curves in class 28050.i

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
28050.i1 28050v1 \([1, 1, 0, -11325, -468675]\) \(-257050376715625/28435968\) \(-17772480000\) \([]\) \(54432\) \(0.99574\) \(\Gamma_0(N)\)-optimal