Properties

Label 279312.br
Number of curves $2$
Conductor $279312$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("br1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 279312.br have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(11\)\(1 + T\)
\(23\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(5\) \( 1 - 3 T + 5 T^{2}\) 1.5.ad
\(7\) \( 1 + T + 7 T^{2}\) 1.7.b
\(13\) \( 1 + 7 T + 13 T^{2}\) 1.13.h
\(17\) \( 1 - 3 T + 17 T^{2}\) 1.17.ad
\(19\) \( 1 - 8 T + 19 T^{2}\) 1.19.ai
\(29\) \( 1 + 9 T + 29 T^{2}\) 1.29.j
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 279312.br do not have complex multiplication.

Modular form 279312.2.a.br

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + 3 q^{5} - q^{7} + q^{9} - q^{11} - 7 q^{13} - 3 q^{15} + 3 q^{17} + 8 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rr} 1 & 3 \\ 3 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 279312.br

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
279312.br1 279312br2 \([0, -1, 0, -40686624, -99869071104]\) \(12284337086925553/1165987944\) \(707002621351207796736\) \([]\) \(32845824\) \(3.0376\)  
279312.br2 279312br1 \([0, -1, 0, -1075104, 227411712]\) \(226646274673/94431744\) \(57259160260036263936\) \([]\) \(10948608\) \(2.4883\) \(\Gamma_0(N)\)-optimal