Properties

Label 279300cs
Number of curves $4$
Conductor $279300$
CM no
Rank $0$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("cs1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 279300cs have rank \(0\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 - T\)
\(5\)\(1\)
\(7\)\(1\)
\(19\)\(1 + T\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 + 4 T + 13 T^{2}\) 1.13.e
\(17\) \( 1 - 6 T + 17 T^{2}\) 1.17.ag
\(23\) \( 1 + 6 T + 23 T^{2}\) 1.23.g
\(29\) \( 1 - 6 T + 29 T^{2}\) 1.29.ag
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 279300cs do not have complex multiplication.

Modular form 279300.2.a.cs

Copy content sage:E.q_eigenform(10)
 
\(q + q^{3} + q^{9} - 4 q^{13} + 6 q^{17} - q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rrrr} 1 & 2 & 3 & 6 \\ 2 & 1 & 6 & 3 \\ 3 & 6 & 1 & 2 \\ 6 & 3 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 279300cs

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
279300.cs4 279300cs1 \([0, 1, 0, -1496133, -704809512]\) \(12592337649664/1315845\) \(38701962101250000\) \([2]\) \(4976640\) \(2.2149\) \(\Gamma_0(N)\)-optimal
279300.cs3 279300cs2 \([0, 1, 0, -1612508, -588900012]\) \(985329269584/252434475\) \(118794654197100000000\) \([2]\) \(9953280\) \(2.5614\)  
279300.cs2 279300cs3 \([0, 1, 0, -3260133, 1235810988]\) \(130287139815424/52926616125\) \(1556690865122531250000\) \([2]\) \(14929920\) \(2.7642\)  
279300.cs1 279300cs4 \([0, 1, 0, -45271508, 117187205988]\) \(21804712949838544/8680921875\) \(4085207110687500000000\) \([2]\) \(29859840\) \(3.1107\)