Properties

Label 27885f
Number of curves $2$
Conductor $27885$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("f1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 27885f have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(3\)\(1 + T\)
\(5\)\(1 + T\)
\(11\)\(1 + T\)
\(13\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(2\) \( 1 + T + 2 T^{2}\) 1.2.b
\(7\) \( 1 - 2 T + 7 T^{2}\) 1.7.ac
\(17\) \( 1 + 6 T + 17 T^{2}\) 1.17.g
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 - 8 T + 29 T^{2}\) 1.29.ai
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 27885f do not have complex multiplication.

Modular form 27885.2.a.f

Copy content sage:E.q_eigenform(10)
 
\(q - q^{2} - q^{3} - q^{4} - q^{5} + q^{6} + 5 q^{7} + 3 q^{8} + q^{9} + q^{10} - q^{11} + q^{12} - 5 q^{14} + q^{15} - q^{16} - q^{18} + 6 q^{19} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the Cremona numbering.

\(\left(\begin{array}{rr} 1 & 7 \\ 7 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with Cremona labels.

Elliptic curves in class 27885f

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
27885.g2 27885f1 \([1, 1, 1, -3676, 84248]\) \(32506551525721/2578125\) \(435703125\) \([]\) \(28224\) \(0.70414\) \(\Gamma_0(N)\)-optimal
27885.g1 27885f2 \([1, 1, 1, -192501, -32587482]\) \(4668056654282578921/213092214885\) \(36012584315565\) \([]\) \(197568\) \(1.6771\)