Properties

Label 277440.es
Number of curves $4$
Conductor $277440$
CM no
Rank $1$
Graph

Related objects

Downloads

Learn more

Show commands: SageMath
Copy content sage:E = EllipticCurve("es1") E.isogeny_class()
 

Rank

Copy content sage:E.rank()
 

The elliptic curves in class 277440.es have rank \(1\).

L-function data

 
Bad L-factors:
Prime L-Factor
\(2\)\(1\)
\(3\)\(1 + T\)
\(5\)\(1 - T\)
\(17\)\(1\)
 
Good L-factors:
Prime L-Factor Isogeny Class over \(\mathbb{F}_p\)
\(7\) \( 1 - 4 T + 7 T^{2}\) 1.7.ae
\(11\) \( 1 + 11 T^{2}\) 1.11.a
\(13\) \( 1 - 2 T + 13 T^{2}\) 1.13.ac
\(19\) \( 1 + 19 T^{2}\) 1.19.a
\(23\) \( 1 - 4 T + 23 T^{2}\) 1.23.ae
\(29\) \( 1 + 2 T + 29 T^{2}\) 1.29.c
$\cdots$$\cdots$$\cdots$
 
See L-function page for more information

Complex multiplication

The elliptic curves in class 277440.es do not have complex multiplication.

Modular form 277440.2.a.es

Copy content sage:E.q_eigenform(10)
 
\(q - q^{3} + q^{5} + 4 q^{7} + q^{9} + 2 q^{13} - q^{15} + O(q^{20})\) Copy content Toggle raw display

Isogeny matrix

Copy content sage:E.isogeny_class().matrix()
 

The \(i,j\) entry is the smallest degree of a cyclic isogeny between the \(i\)-th and \(j\)-th curve in the isogeny class, in the LMFDB numbering.

\(\left(\begin{array}{rrrr} 1 & 4 & 2 & 4 \\ 4 & 1 & 2 & 4 \\ 2 & 2 & 1 & 2 \\ 4 & 4 & 2 & 1 \end{array}\right)\)

Isogeny graph

Copy content sage:E.isogeny_graph().plot(edge_labels=True)
 

The vertices are labelled with LMFDB labels.

Elliptic curves in class 277440.es

Copy content sage:E.isogeny_class().curves
 
LMFDB label Cremona label Weierstrass coefficients j-invariant Discriminant Torsion structure Modular degree Faltings height Optimality
277440.es1 277440es3 \([0, -1, 0, -555265, 159441985]\) \(23937672968/45\) \(35592293744640\) \([2]\) \(2359296\) \(1.8555\)  
277440.es2 277440es4 \([0, -1, 0, -92865, -7623135]\) \(111980168/32805\) \(25946782139842560\) \([2]\) \(2359296\) \(1.8555\)  
277440.es3 277440es2 \([0, -1, 0, -35065, 2445625]\) \(48228544/2025\) \(200206652313600\) \([2, 2]\) \(1179648\) \(1.5089\)  
277440.es4 277440es1 \([0, -1, 0, 1060, 140850]\) \(85184/5625\) \(-8689524840000\) \([2]\) \(589824\) \(1.1624\) \(\Gamma_0(N)\)-optimal